Aerosol Assessement

an update

Jeff Reid ... and partners

the first page

- A Critical Review of the Efficacy of Commonly Used Aerosol Optical Thickness Retrievals
 - literature assessment
 - report to the Radiation Committee of GEWEX

 commissioned by NASA Radiation Sci. Prog.
 - draft: July 20, 2015
 - assessment Panel:
 - Jeffrey S. Reid (editor), Sundar A. Christopher, Richard A. Ferrare, Paul A. Ginoux, Stefan Kinne, Gregory G. Leptoukh, W. Stackhouse
 - oversight:
 - Hal B. Maring, Charles M. Ichoku

the reports content

- level 3 1x1 monthly gridded AOD products
 - averaged, without or without objective error
 - these data-sets are numerous and available
 - Nature of the Problem: Fundamentals of Satellite Based Aerosol Products / Applications
 - Overview of Assessed Satellite Products
 - Evaluation of Product Evaluation, Verification and Intercomparion Studies
 - Satellite and model relationships
 - Aerosol Optical Thickness Trends

the status

- the good news
 - a BIG report exists (+ 80 pages of references)
- the bad news
 - little has happened during the last year (the latest version still has a July 2015 date)
 - ... as Jeff (assuming overall responsibility) wanted to include new items (on the SE Asia hot-spot, MODIS, MISR)... he was side-tracked
- the way out ?
 - support and encourage Jeff ...

– still relevant? new things happened since !

new developments

- AeroSAT
 - internally ongoing assessments !
 - uncertainty
 - air quality ?
 - new satellites
 - retrieval model issues
 - longterm records
 - vs modeling
 - new challenges

AeroSAT

...unfunded like AeroCom

- a forum on satellite retrievals of aerosols
 - integral part of AeroCom meeting (since 2013)
 lead by R.Kahn (GSFC) and T.Popp (DLR)
- goals
 - open and active exchange of information
 - -on retrievals: their strengths and limitations
 - -match user requir. to technical capabilities
 - benefit from latest technological advances
 - harmonize data format standardization
 - forum for satellite aerosol retrieval experts
 - learn, initiate, harmonize, interact with users
 - promote the use of satellite data

AeroSAT topics ... at Beijing 2016

- characterizing retrieval uncertainty
 pixel uncertainty required in assimilations
- challenges for contributions to air quality ass.
 column properties vs near surface needs
- constraining aerosol type
 since arbitrary ... just for administrators ?
- long-term data record
 - are records accurate/long enough for trends?

uncertainty – least square?

- assimilations require (pixel) error definitions
 - errors are often to general (GCOS, MODIS)
 - even given error-cones often do not apply
- why least square linear fits do NOT work ?
 - lack of linear relationship (e.g. reflect vs SSA)
 - no independence between data and errors
 - no constant variance of errors
 - no normality of errors
 - what would / could work ?

uncertainty – more useful metric

error statistics vs. AOD

compliance with uncertainty estimates

ATSR ADV(FMI) retrieval deviations

A.Sayer (GSFC)

air quality ?

- difficult
 - over China: poll winter max, AOD summer max
 - easier with high resolution & high coverage

$$AOD = PM_{2.5} H f(RH) \frac{3Q_{\text{ext,dry}}}{4\rho r_{\text{eff}}} = PM_{2.5} H S$$

H*S

2001-2006

- with modeling ?
 - assume a well-mixed boundary layer height H

new aerosol dedicated satellites

- many new satellites with aerosol retrieval capabilities
- VIIRS ← MODIS heritage US
- SLSTR
 ATSR heritage Europe
- GOCI, MI (geo)

Korea

Japan

- HIMAWARI
 - usually different retrievals are tried or older
 - (and somewhat) successful retrievals adapted

New satellites **VIRS**

single day coverage

MODIS more mature

> full yr 2015 now exists for VIIRS

VIIRS better coverage migher resolution

L.Remer (NOAA)

retrieval model differences matter **3diff ATSR retrievals applied to same sensor data**

0.1

Y

S

M

Y

M

UDDDU AER ZUU/ IIIeali U.1/3

UDDDU AER 2007 Mean 0.100

... even L2 differences ! (2007)

ADV-SU AOD (mean difference 0.001)

ADV-ORAC AOD (mean difference -0.03)

ORAC-SU AOD (mean difference 0.023)

detailed investigations are underway to investigate differences → eventually retrievals will get better

if reliable ref data exist for

- lower rad. boundary
- best aerosol model

from L.Sogocheva (FMI) AeroSAT 2016 presentation

long-term data records

mainly for AOD, pieced together, assumptions

- major consistency issues MODIS Terra drift
 - subsequent instruments MODIS Aqua vs Terra
 - similar but diff instruments VIIRS vs MODIS Aqua
 - different retrieval assumptions MISR vs MODIS
 - consistency of reference data-sets AERONET
- possible solutions
 - assess overlaping periods
 - tie to reference dataset (also over a gap)
 - pixel-level uncertainties; need harmonization
 - tie through geo data (with diurnal cycle)
 - good documentation/ std. naming & format
- do not get tempted by request for global trends

Some 10+ year passive satellite-based aerosol records in US

Variable(s)	Satellite	Time-Period	Who?
AOD (Dark-target) Ocean + land (dark)	MODIS → VIIRS	2000-?	GSFC
AOD (Deep-Blue) Land (all) + ocean	SeaWIFs/MODIS →VIIRS	1997-?	GSFC
AOD (DT +new) Ocean + Land (dark)	VIIRS> JPSS	2012-?	NOAA-STAR
AOD (AVHRR)	AVHRR	1980s -	Various (NOAA)
UV-A INDEX	toms → omi	1980s -	GSFC
SSA /AAOD (need z))	OMI	2005-	GSFC
AOD	MISR	2000-present	JPL/GSFC
Aerosol " type " ?	MISR	2000-present	GSFC
AOD AAOD size-dis	AERONET (ground!)	1990s-?	GSFC

from R.Levv's (GSFC) AeroSAT 2016 presentation

VIIRS vs MODIS

- VIIRS is supposed to extend MODIS data
 - same DT retrieval applied after spectral adjust

MODIS

- unfortunately ... a systematic bias over ocean VIIRS higher by 20%

from R.Levv's (GSFC) AeroSAT 2016 presentation

how to go back in time

even more complicated

- less capable sensors, poor calibration, drifts

NOAA sensor drifts during lifetime (A,Heidinger 2014)

AOD interann. variability for spring application: variability-yes, trends-no

from H.Lee (JPL) AeroSAT 2016 presentation

vs modeling

- larger AOD differences over
 - Sahara (notoriously diff over bright surfaces)
 - Australia (very low AOD retrievals
 - polar region: no data (except CALIPSO)
- need to document /reveal retrieval assumptions
 aerosol model (absorption and size)
 - surface reflectance

simply make assumptions a retrieval output !

new challenges

- link aerosol retrievals to retrievals of other environmental properties to constrain models via relationships of joint histograms
- example: AOD fine (aero#) vs CDNC (drop#)

aerosol indirect (Tomey) effect

- application of observation based 'median fit'
- d(CDNC) = ln(.001*AODf,today)/ln(.001*AODf,PI)
 - yield aerosol indirect forcing results compare well (pattern, strength) to complex pathways: – crit.radius, CCN, supersat, CCN vs CDNC

final slide

- the GEWEX report is a great resources
 - but mainly for older, circulated data-sets
 - but too large for quick answers to users
- the aerosol retrieval community now meets regularly to share ideas / interact with users
 but multi-sensor capabilities are avoided
- for climate records
 - applying the same successful retrievals (e.g. dark target, tanre ocean) to different sensors