Representing Agriculture Management in the WRF regional climate model

Fei Chen<sup>1</sup>, Alex Mahalov<sup>2</sup>, Michael Barlage<sup>1</sup>, Xiaoyu Xu<sup>1</sup>, Xing Liu<sup>3</sup>, Dev Niyogi<sup>3</sup>

<sup>1</sup> National Center for Atmospheric Research
 <sup>2</sup> Arizona State University
 <sup>3</sup> Purdue University

Supported by NCAR Water System Program, USDA/NIFA EaSM-3, and NSF INFEWS



# Challenges in modeling agriculture in ESMs

- Crop growth models are not static
- Complex agriculture manage practice
  - Rotation and double crops
  - Fertilization
  - Irrigation
  - Tile drainage
- From field scale to regional scales
- How to address those challenges? (using WRF-Crop as an example)





## **WRF-Crop model development**

- Noah-MP-Crop (corn and soybean growth) models released in WRF 3.8 (2016)
- Implemented auxiliary crop data sets in WRF 3.9 (2017)



Noah-MP-Crop model

Evaluation against field data, the model captured well the seasonal and annual variability of crop phenology and yield



**U.S. Corn Belt** 



## Data Requirement for integrated regional crop-climate modeling in WRF

30-meter LandSat-based USDA/GMU CropScape crop type product



### Difficulties in regionalizing crop modeling

- For a normal year (2013), WRF-Crop predicted crop yield is good in Corn Belt (Iowa, Illinois, Indiana) near where the model was calibrated (right)
- Challenge: improve model performance beyond calibration region for its global applications using spatially varying parameters



Corn yield ratio (modeled /observed) in % for 73 USDA zones (e.g., <100 implied under prediction)

### USDA/NASS State-level data

Data constraints provide key to regionalization of agriculture modeling





## **Crop irrigation modeling**

- Irrigation increase (reduce) humidity (temperature), and altered surface heat fluxes and runoff
- Discrepancies in modeling effects of irrigation on temperature and precipitation
- Need to improve irrigation parameterization in ESMs



Chen et al., 2018, Environ. Res. Lett., Using 10-year data over nearby irrigated and non-irrigated sites, Mead, Nebraska.

## **Irrigation parameterization**

• **Goal:** calculate the timing and amount of irrigated water within irrigated agriculture lands

## • Timing:

- Crop growing season: when LAI is above a threshold
- Soil-moisture deficit trigger: when the root-zone soil moisture availability (MA) is below the trigger criterion:  $MA = (SM_{REF} SM_{WP})/(SM SM_{WP})$ .
- Irrigation stops if precipitation is above a threshold
- Amount: the smaller amount of  $(SM_{REF} SM)$  and maximum irrigation threshold
- **Duration:** total irrigation water computed above is applied as precipitation input at a uniform rate between the beginning and ending of irrigation

#### Modeling irrigation at field scales using only MODIS LAI to define growing season



#### Enhance irrigation scheme by including GDD (growing degree days) Activate irrigation: GDD>280 for corn, GDD >560 for soybean



### **Modeling irrigation at regional scales**



**Crop irrigation** modeling is constrained by **MODIS 500-m** irrigation fraction, USDA 30-m dominant crop types and fraction of each crop type, and USDA/NASA planting/harvest dates.

### **Modeling irrigation at regional scales**



Compared to USGS county-level year 2000 annual irrigation withdrawals, the model using field-scale calibrated parameters overestimates irrigation amount in Nebraska, but underestimates it in Lower Mississippi **River** Basin.

#### Modeling irrigation at regional scales Parameter calibration



County-level calibrated IRR\_CRI (soil moisture trigger criterion) values

Optimized simulation with calibrated IRR\_CRI

#### **Modeling hydrometeorological effects of irrigation**



Reduce monthly temperature by
0.8 ~1.2 K in southeastern NE and
by up to ~1.4 K in eastern AR

Increase air humidity by ~1.2~1.8 g kg<sup>-1</sup> (NE) and 2.4 g kg<sup>-1</sup> (AR)

most of irrigation water are used to increase soil moisture and evaporation, rather than runoff.

- increase monthly evaporation by up to 80 mm in NE and ~120 mm in AR
- increase monthly total runoff
   by ~ 20 mm

## Lessons learned

- Regional calibration of crop and irrigation model parameters helps transition field-scale crop modeling to regional scales
- Integrating agriculture management data is key to constraining agriculture model solutions
- Need to connect irrigation with other water cycle components (underground water, reservoir, etc)



### Convection-permitting regional climate modeling



Human-permitting modeling

16