Evaluating multi-year, multi-site data on the energy balance closure of eddy-covariance flux measurements at cropland sites in southwestern Germany

> Ravshan Eshonkulov DSc, ass.prof. TIIAME NRU Karshi institute of irrigation and agrotechnology

Overall background

- Different pedo-climatic regions and conditions
- Intensively managed cropland sites under global climate change

Overall background

- The greenhouse gases (GHG) from agricultural sector
- Problems in precise measurements of carbon, energy, water exchange
- Quantitative dynamics of carbon flux from agricultural ecosystems remain elusive

Eddy towers

https://harvardforest.fas.harvard.edu/other-tags/eddy-flux

https://blogs.exeter.ac.uk/timhill/2018/12/05/fully-fundedphd-available-developing-and-testing-low-cost-eddycovariance/

FLUXNET

https://fluxnet.org/sites/site-summary/

Eddy Covariance (EC) method

Eddy Covariance method

- EC flux data are used to validate land surface models.
- Measured EC fluxes usually do not close the energy balance.
- Energy balance closure ranges from 70 90 % for various ecosystems.
- The imbalance of the energy budget has been widely studied.
 - Instrumental errors, uncorrected sensor configurations, problems of heterogeneties in the area, atmospheric conditions, loss of low and/or high frequency contributions to the turbulent fluxes and neglected energy storages

Research aims

To study the causes of the energy imbalance in EC measurements in agricultural croplands

Study area

Kraichgau region

Warm region Mean temperature: 9.4 °C Mean precipitation: 890 mm

Swabian Jura region

Colder and harsher climate Mean temperature: 7.5 °C Mean precipitation: 1042 mm

Eshonkulov et al. (2019a)

Materials and methods: EBC criteria

 R_n (W m⁻²) – the net radiation, G (W m⁻²) – the ground heat flux H (W m⁻²) – the sensible heat flux, LE (W m⁻²) – the latent heat flux

Materials and methods: The energy balance

Turbulent fluxes

Minor storage terms

Available energy

- S_a air enthalpy change, (W m⁻²)
- S_q atmospheric moisture change, (W m⁻²)
- S_p energy consumption by photosynthesis and release by respiration, (W m⁻²)
- S_c crop enthalpy change, (W m⁻²)

Photo by: Felix Baur

Materials and methods: Footprint

Measurements within footprint:

Soil heat storage (S_g) Crop enthalpy change (S_c) Ground heat flux (G): Harmonic method

 G_{hp} – harmonic plate G_{ht} – harmonic temperature G_{hf} – harmonic temperature (footprint)

Objective|**Hypothesis**

Objective

To evaluate if the crop type, site characteristics, wind direction, atmospheric conditions, and footprint area acts as controls on the energy balance closure.

Hypothesis

Multi-year, multi-site observations will provide new insights into the nature of the energy imbalance of EC flux measurements.

Study site

Kraichgau

Swabian Jura

Study site

Monthly averaged EBC by OLR

The highest EBC: July and August

The lowest: autumn and winter months

Eshonkulov et al. (2019b)

EBR depending on the wind direction

19

EBC depending on footprint size

Conclusions

- The EBC depends on how well thermally and mechanically induced turbulence are developed.
- The EBC was problematic during winter months and under stable atmospheric conditions.
- Furthermore, the EBC was negatively affected by:
 - Heterogeneous source area
 - Flow distortions around the anemometer
- The EBC was positively affected as the footprint area decreased.

Many thanks for your attention