

Estimating global groundwater withdrawal and depletion using an integrated hydrological model, GRACE, and in situ observations Yadu N. Pokhrel

In the agenda: "Impact of anthropogenic water usage on sea-level"

> Taikan Oki Institute of Industrial Science

The University of Tokyo

Terrestrial Water Cycle and Climate Change Natural and Human-Induced Impacts

Qiuhong Tang and Taikan Oki Editors

A workshop co-sponsored by GLASS and GHP "Including Water Management in Large Scale Models" Gif-sur-Yvette, France, 30 September 2016

http://hydro.iis.u-tokyo.ac.jp/

Synthesized Global Water Cycle

(Hanasaki et. al, *J. Hydrol.*, 2006)

Dam and Reservoirs

Human activity changes terrestrial water cycle:

- ✓ Reservoir operation ⇔ operating rules unpublished
- ✓ Irrigation intake ⇔ no high resolution data

# of large dams in the world	45,000*
Their total storage capacity	7182 km ^{3*}
Annual global river discharge	40000 km ³ /year**
Global water withdrawal for irrigation	2504 km ³ /year***
Annual global water withdrawal	3788 km ³ /year***

* WRD, 1998, **Korzun, 1978, ***Shiklomanov, 2000

Coupled Land-river-irrigation-reservoir⁴**model**

Land surface models and Human Interventions

Land Surface Model with Anthropogenic Activities

Global and Regional Irrigation Water Use

Country-scale irrigation water withdrawals are simulated well.

Observed data: FAO AQUASTAT, country statistics.

Pokhrel et al. (2012a)

Unsustainable Water Use (Non-local Non-renewable Blue Water)

→ Unsustainable groundwater (NNBW): <u>Demand – Supply</u> → Groundwater flow processes are accounted implicitly.

Slide 10

Anthropogenic TWS Contributions for Sea Level Change

http://hydro.iis.u-tokyo.ac.jp/ (Pokhrel, et al., *Nature Geoscience*, 2012) ¹²

Contributions to Sea-level change in previous estimates

IPCC-AR4

This study

Other studies

http://hydro.iis.u-tokyo.ac.jp/

... our estimate is a minority

(Aeschbach-Hertig and Gleeson, Nature Geoscience, 2012)

Source	1993–2010
Observed contributions to global mean sea level (GMSL) rise	(mm/y)
Thermal expansion	1.1 [0.8 to 1.4]
Glaciers except in Greenland and Antarctica ^a	0.76 [0.39 to 1.13]
Glaciers in Greenland ^a	0.10 [0.07 to 0.13] ^b
Greenland ice sheet	0.33 [0.25 to 0.41]
Antarctic ice sheet	0.27 [0.16 to 0.38]
Land water storage	0.38 [0.26 to 0.49]
Total of contributions	2.8 [2.3 to 3.4]
Observed GMSL rise	3.2 [2.8 to 3.6]
Modelled contributions to GMSL rise	
Thermal expansion	1.49 [0.97 to 2.02]
Glaciers except in Greenland and Antarctica	0.78 [0.43 to 1.13]
Glaciers in Greenland	0.14 [0.06 to 0.23]
Total including land water storage	2.8 [2.1 to 3.5]
Residual ^c (Adopted from Table 13.1 of IPCC AR5, 2013)	0.4 [–0.4 to 1.2]

Fully Coupled Model (<u>HiGW-MAT</u>)

Natural Flow of Water + Human Impacts + GW-Pumping

Pokhrel et al. (2015, WRR)

Global Groundwater Withdrawal & Depletion

Pokhrel et al. (2015, WRR)

Groundwater Withdrawal (US Aquifers)

✓ Simulated withdrawals compare well with USGS observations.
 ✓ Groundwater is mainly used for irrigation in most aquifers.

TWS & Groundwater Depletion (Central Valley)

Slide 19

Remarks

- Human interventions on local hydrological cycles should have been triggering unintended consequences:
 - Enhancing global mean sea level rise (GMSLR) by ground water pumping for irrigation (~300 km³/y ?)
 Suppressing GMSLR by storing water in artificial reservoirs (~8,000 km³ of total capacity)
- Fully coupled terrestrial model for both offline and coupled simulations should be promising:
 *Energy-water-carbon, natural and human, hill sloperiver-flood plain, surface/subsurface/groundwater, ...

http://hydro.iis.u-tokyo.ac.jp/

Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts Qiuhong Tang and Taikan Oki

- Overview of the changes in the terrestrial water cycle
- Human alterations of the terrestrial water cycle
- Recent advances in hydrological measurement and observation
- Integrated modeling of the terrestrial water cycle
- The Terrestrial Water Cycle: Natural and Human-Induced Changes will be a valuable resource for students and professionals in the fields of hydrology, water resources, climate change, ecology, geophysics, and geographic sciences.
- The book will also be attractive to those who have general interests in the terrestrial water cycle, including how and why the cycle changes.

September 2016 | 9781118971765 | 252 pages | Hardback \$169.95 • £113.50 • €152.00

www.wiley.com/buy/9781118971765

