Including Water Management in Large Scale Models (2016/9/28-30)

Representation of irrigation water withdrawal in SiBUC

Kenji Tanaka Water Resources Research Center, DPRI, Kyoto University tanaka.kenji.6u@kyoto-u.ac.jp

Integrated Water Resources Model

Hydrological simulation considering water withdrawal and dam operation

Land surface model (SiBUC)

Green area model (SiB)

Dq

- Prognostic variables temperature (canopy, ground, deep soil) interception water (canopy, ground) soil wetness (surface, root zone, recharge)
- Time invariant parameter geometrical parameter optical parameter physiological parameter soil physical properties
- Time varying parameter (LAI etc.) estimate from satellite data
- Physical processes radiative transfer interception loss soil hydrology canopy resistance transpiration turbulent transfer, snow, freezing/melting,... etc.

Basic concept is to maintain soil moisture/water depth within appropriate ranges for optimal crop growth.

Application to wheat, corn, soy bean,

cotton etc...

Water layer is added to treat paddy field more accurately.

Irrigation scheme

Paddy field model

Water depth and water temperature are added

$$C_{c} \frac{\partial T_{c}}{\partial t} = Rn_{c} - H_{c} - lE_{c}$$

$$C_{w}D_{w} \frac{\partial T_{w}}{\partial t} = Rn_{w} - H_{w} - lE_{w} - k_{w} \frac{T_{w} - T_{g}}{D_{w}}$$

$$C_{g} \frac{\partial T_{g}}{\partial t} = k_{w} \frac{T_{w} - T_{g}}{D_{w}} - \omega C_{g} (T_{g} - T_{d})$$

$$C_{d} \frac{\partial T_{d}}{\partial t} = \omega C_{d} (T_{g} - T_{d})$$

In-situ Flux station (Lake Biwa Project)

- Three sites from the Lake Biwa Project
 Fluxes of radiation budget and heat budget component
 and related meteorological and hydrological variables
 can be used from these datasets.
- Two sites from the snow depth observation station

Grid P (paddy field)

10

Grid L (lake surface)

Applied condition

Crop type	Growing stage	1st	2nd	3rd	4th	5th
Spring	Periods(%)	23	14	14	14	35
wheat	Soil wetness	0.70	0.60	0.80	0.80	0.55
Winter	Periods(%)	25	20	22	13	20
wheat	Soil wetness	Periods(%) 25 20 22 13 Soil wetness 0.70 0.70 0.80 0.80 Periods(%) 8 48 6 14 Soil wetness 0.75 0.65 0.70 0.75 Periods(%) 25 13 33 13 Vater depth 20-50 none 20-60 moistening int	0.55			
Corn	Periods(%)	8	48	6	14	24
	Soil wetness	0.75	0.65	0.70	0.75	0.65
	Periods(%)	25	13	33	13	16
Rice	Water depth (mm)	20-50	none	20-60	moistening	intermittent
soy bean	Periods(%)	3	26	16	28	27
	Soil wetness	0.75	0.65	0.65	0.70	0.65
cotton	Periods(%)	4	21	13	26	36
cotton	Soil wetness	none	0.5	0.55	0.55	0.5

Chart by required water for cultivation in China

Satellite-derived crop calendar (SACRA)

Kotsuki S. and K. Tanaka (2015):

SACRA - a method for the estimation of global high-resolution crop calendars from a satellite-sensed NDVI. Hydrology and Earth System Sciences, 19, 4441-4461.

http://data-assimilation.riken.jp/ opendata/sacra/sacra_des.html

Download (version 1.00; Kotsuki and Tanaka 2015, HESS)

Description	Sample Image	Binary (w /GrADS ctl)
Global Map of Planting and Harvesting Dates (day of year)	<u>click</u>	download (33Mb)
Global Map of Cropping Intensity (yr^-1)	click	download (03Mb)
Global Map of Dominant Crop (crop species)	click	download (03Mb)
Global Map of Time Series of NDVI (10-days composite)	click	download (191Mb)
ALL	-	download (219Mb)

Comparison with other products

SOWING DATE: SELECTED CROPS

Cropping Intensity SPOT VEGETATION (04-06)

SACRA: Sowing Date [DOY] First (frm Jan.)

20 60 80 120 140 160 200 220 240 280 300 340

SACRA: Harvesting Date [DOY] First (frm Jan.)

NDVI-Crop (bised, doy=1) SPOT VEGETATION (04-06)

0.025 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Annual IWR (Irrigation Water Requirement) [mm/yr]

This Study (Gt)

IRRIGATION SCHEME

- Water is directly supplied to the root zone.
- Small amount of water is frequently supplied.

traditional irrigation (Furrow irrigation)

p0 = waterin

- Water is supplied on the ground.
- Huge amount of water is supplied around once a week.

WATER BALANCE IN IRRIGATED FARM

Drip irrigation

Furrow irrigation

Aral Sea Basin (Central Asia)

OBSERVATION SYSTEM IN UZBEKISTAN

New equipment in Sorghum farm

Cotton

Precipitation gauge

About Model ABOUT WATER CIRCULATION MODEL

Aral Sea shrinking is dynamically analyzed in the model.

Model can be applied for global scale, But Basin scale water balance is analyzed considering regional features.

Calculation of Water Balance prec evap

Water balance of each mesh $Runoff = prec - evap - \Delta swe - \Delta soilm$

Water balance of the catchment $Qin = \sum Runoff - \sum \frac{Win}{\gamma} + \sum Wout - \alpha$

Water balance of the Aral Sea

$$\Delta S = Qin + (\mathbf{P} - E)_{aral}$$

Runoff	Water resource	Gt
prec	Precipitation	Gt
evap	Evapotranspiration	Gt
Win	Irrigation water requirement	Gt
Wout	Drainage water	Gt

r	Water conveyance efficiency (=0.4)	
Qin	Inflow to the Aral	Gt
soilm	Soil moisture	Gt
swe	Snow water equivalent	Gt

 α : Water requirement outside of the basin

Annual water balance of the Aral Sea

S(t+1) = S(t) + Qin + (Prec-Evap)

WATER BALANCE OF THE BASIN

Historical change of water balance

Water balance of the Aral Sea

Historical water balance is clearly analyzed.

Qn	Water infow into the AralSea			
Irrig	Irrigation water requrement			
Runoff	Water resource			
P-E	Precipitation - Evaporation in the AralSea			
⊿Sanal	Analyzed storage change			
⊿Srep	Reported storage change			

REPRODUCING OF THE ARAL SEA SHRINKING

GrADS: COLA/IGES

2012-02-14-12:50

clearly analyzed.

Historical change of the Aral Sea area

Urban Canopy model

- Urban canyon concept sky-view factor (road: skyg wall: skyw)
- Prognostic variables temperature (roof, wall, road, deep soil) interception water (roof, wall, road)
- Roughness elements (same width but different roof height)
- Spatial distribution of roof height and anthropogenic heat

kho

Δx

bw

wall

skyw

skva

road

roof

How to estimate urban parameter where GIS information is not available?

Digital Surface Model from satellite (ALOS PRISM)

Building Floor number distribution

Dam Operation Modeling

□ 1231 dams (more than one million m³)

- Flood protection dam (f)
- Water utilization dam (u)
- Multi purpose dam(m)

Catchment area of all dams more than one million m³

1. Flood protection operation $Q_{base} = \begin{cases} Q_{flood} \\ Q_{norm} \end{cases} when \begin{cases} Q_{inf} > Q_{flood} \\ Q_{inf} \le Q_{flood} \end{cases} \qquad Q_{norm,u} = \begin{cases} Q_{low} & \text{for rainy season} \\ Q_{dry} & \text{for dry season} \end{cases}$

2. Water utilization operation

$$Q_{ouf} = \max \left\{ Q_{base}, \beta \cdot Q_{req} \right\}$$
Qreq: water demand
$$Qdry = \frac{St}{dry \text{ period}}$$

$$Q_{norm,f} = \min\left\{Q_{flood}, Q_{inf}\right\}$$

 $Q_{norm,m} = \begin{cases} Q_{norm,f} & \text{for } St > V_u \\ Q_{norm,u} & \text{for } St \le V_u \end{cases}$

St: storage, Vu: water use capacity

Based on the historical data, model parameters can be optimized.

Now we are trying to find out the relationship between optimized parameters and dam specification to estimate the parameter of the dam where no historical data are available.

Data source for future water demand estimation

	dataset	unit	year	purpose
Domestic water	AQUASTAT (FAO)	country	1960-2010 (every 5 year)	Determination of parameter and variable
Industrial water	AQUASTAT (FAO)	country	1960-2010 (every 5 year)	Determination of parameter and variable
Population (nation)	United Nations	country	1950-2100 (every year)	Future projection of domestic water
Power generation	United Nations	region	Historical data (every year)	Future projection of industrial water
GDP	EPOC (Environment Policy Committee)	country	2050, 2100 (each SSP)	power generation (region \rightarrow country)
Population (gridded)	GPW (GriddedPopulation of the world)	2.5 min mesh	2010	Country -> 2.5min Grid

Prognostic equation for domestic and industrial water demand

AIM (MoE, Japan)

ctor

$$D = POP \times (i_{dom,t0} + S_{dom} \times (t-t_0)) \times 0.365$$
$$I = ELC \times (i_{ind,t0} + S_{ind} \times (t-t_0)) \qquad [day year^{-1}m^{3}L^{-1}]$$

Disaggregate the regional future estimation by AIM using power generation ∞ GDP

Domestic water demand reproduction

Disaggregation to each grid

SCENARIO ANALYSIS

In this study

Virtual water balance in each scenario is quantitatively estimated by physical approach.

Scenario

Geenano							
Irrigation type Drip irrgation Furrow in					gation		
Water conveyance efficiency	40%	45%	50%	55%	60%		
Irrigated area	0%	25%	50%	75%	100%		

SCENARIO ANALYSIS

Drip irrigation scenario

⇒ 16Gt can be annually saved Aral Sea would be 1976's level

- $0\% \Rightarrow 23Gt$ water can be annually saved Aral Sea would be 1960's level.
- $25\% \Rightarrow 17Gt$ water can be annually saved Aral Sea would be 1974's level.
- $50\% \Rightarrow 10$ Gt water can be annually saved Aral Sea would be 1982's level.
- $75\% \Rightarrow 4$ Gt water can be annually saved Aral Sea would be 1991's level.

SCENARIO ANALYSIS

Water conveyance efficiency

- 0.45 (5% improvement)
 - \Rightarrow 6Gt water can be annually saved Aral Sea would be 1986's level.
- 0.50 (10% improvement)
 - ⇒ 12Gt water can be annually saved Aral Sea would be 1980's level.
- 0.55 (15% improvement)
 - ⇒ 18Gt water can be annually saved. Aral Sea would be 1974's level.

0.60 (20% improvement)

- ⇒ 22Gt water can be annually saved Aral Sea would be 1967's level.
- Quantitative scenario analysis was enabled by physical model.
- To Make a plan for sustainable development, these information will be important.