gkd UNIVERSITY OF “
NSERC & SASKATCHEWAN (>

for Water Security Changing Cold Regions Network

How to represent human-water
processes in land-surface models:
Current state and ways forward

Ali Nazemi* and Howard Wheater

Including water Management in large-scale models
Gif-Sur-Yvette, 28-30 September 2016

*Building, Civil and Environmental Engineering, Concordia University,
ali.nazemi@concordia.ca

IIIIIIIII

CRSNG The Global Institute CCR N mm \{\ ?

NS4



Human as a key hydrological driver during the
“Anthropocene”

Pokhrel et al. (WIREs Water, 2016)
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FIGURE 5 | Groundwater withdrawals per 0.5 degree grid cell for circa 2000, compiled by Wada et al.’* based on the groundwater database
of the International Groundwater Resources Assessment Centre (IGRAC). The inset depicts the time series of global total withdrawals from 1900
to 2010.
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Key challenges in including human-water
processes in large-scale models

1. Including human-water processes requires extending the scope of
large-scale modeling.

2. There is a mismatch between the scales in which human-water
processes take place and the scale of large-scale models.

3. Including human-water processes in large-scale models requires
new process representations.

4. A wide spectrum of natural and anthropogenic drivers can influence
the interrelation between man and water.

5. Data support is limited.
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Water resource management as an emerging
element of terrestrial water cycle

 Human-water processes are
largely manifested by water
resource management.

* Water resource management
can be considered as the
combinations of activities
around anthropogenic water
use, water supply and water
allocation.

=

Atmosphere

Water demand

]

Water allocation

Natural land
and hydrology




Taxonomy of current representations of water
resource management in large-scale models

* Type of element
e.g., water demand vs. water availability vs. water allocation
Irrigation vs. industrial demand
Groundwater vs. surface water

* Type of approach
e.g., top-down vs. bottom-up approach

* Type of conceptualization
e.g., irrigation demand as a function of soil moisture content
vs. evapo(transpi)ration

* Type of simulation o
e.g., historical simulation vs. future projections
Regional vs. global simulation

* Type of host models
e.g., GHMs vs. LSMs

* Type of inclusion
e.g., online vs. offline
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Part |. Water demand

Type of demand: Irrigation
Modeling approaches

* Top-down estimation of irrigation demand

Information at coarse
spatial and temporal scales

Land-use, technologic,
socio-economic and climatic
proxies

Irrigation water demand at

the grid scale
r | ]

Census data

(e.g., FAO-AQUASTAT)

Models’ outputs

(e.g., GCAM)

Included in offline and online modes.
Simulated under historical and future

scenarios regionally and globally.

Pros and cons

Gridded irrigation
demand

e Simplicity and easy implementation
* Quality of large-scale irrigation data
* Uncertainty in socio-economic

models
* Natural variability in irrigation
demand in time and space
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Part |. Water demand
Type of demand: Irrigation

Modeling approaches
* Bottom-up estimation of irrigation demand

1 ET weather
parameters * Wide range of conceptualizations
P M\ :
* Implementation (and to some extent

T Crop @- E'I;: conceptualization) depend on the data

characteris availability and the level of complexity supported
by the host model

. ‘7E management

environmental \\~t
factors @—=ET; ag;

ET * Centered around evapo(transpi)ration
o}

Conceptualization

* Soil moisture content in the root zone
(] Saturated soil moisture
O Soil moisture at field capacity
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Part |. Water demand
Type of demand: Irrigation

Conceptualizations
* Crop water requirement

1. Evapotranspiration-based (FAO-CROPWAT)
d Easily implementable

d Known limitations
2. Transpiration-based
d More physically-based

(1 Requires a detailed vegetation scheme
d Carbon cycle should be included
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Part |. Water demand
Type of demand: Municipal, industrial,

energy

* Include both consumptive and nM%quIM’E)%v% Bpegoa(:hes

* Sequential modeling approach Explicitl [implicit

Water demands at coarse
spatial and temporal scales

Downscaling using socio-
economic and technological

Census data

Bottom-up demand
(use) estimation

¥

proxies

Water demands at fine
spatial and temporal scales

Adjusted gridded
water demand
(use)

Gridded water
demand (use)

pu
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Disaggregation using

climatic proxies

Socio-economic
models’ outputs

Water demands at fine
spatial and coarse temporal
scales
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Part I. Water demand
Outstanding challenges

* Online simulations

* Modeling resolution

* Data support

* Demand estimation algorithms
J Water demand vs. water withdrawal vs. actual water use
J Uncertainty
d Water availability constraint

* Limitation in host models
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Part Il. Water supply

Type of supply: Lake and reservoirs
Modeling procedure
* Location, purpose, physical characteristics
* In-grid reservoirs vs. main channel reservoirs
* Reservoir operation algorithms
J Lake models
4 I/O models

1 Simulation-based algorithms (after Hansaski et al., 2006)

(1 Optimization-based algorithms (after Haddeland et al., 2006)
 Modified algorithms

There is still no recognition of changes in vertical fluxes
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Part Il. Water supply
Type of supply: Diversion and water reuse

Modeling procedure
e Streamflow diversion

d In-basin diversion: Instantaneous abstraction
J Inter-basin diversion: Routing

* Desalination and water reuse

(1 Bottom-up estimations
J Top-down downscaling

=

Data support is limited
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Part Il. Water supply
Type of supply: Groundwater

Modeling procedure
Groundwater availability

* Unlimited availability: Non-renewable and Nonlocal Blue Water
(NNBW)

* Groundwater availability as a function of baseflow: linear reservoirs
* Dynamic representation of groundwater availability
Groundwater recharge

* Heuristic approach
* Leaky buckets
* Physically-based Richards’ equation
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Part lll. Water allocation
Type of allocation: Surface water

Modeling procedure
* Conditioning the demand to the available supply

 Heuristic approaches
* Priorities
] Static assumptions
d Dynamic assumptions
* Estimate allocation
1 Handling water deficit
d Abstract from supply sources
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Part lll. Water allocation
Type of allocation: Groundwater

Modeling procedure
* In-grid allocation

d Lateral groundwater movement is largely ignored
* Renewable vs. non-renewable allocation

(1 Recharge vs. abstraction
* Groundwater withdrawal

(d Bottom-up approach
Depend on how the groundwater availability is considered

J Top-down approach
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State-of-the-art

* There are limited offline applications that consider all the elements of
water resource management within a unigue model.

* There is a wide range of algorithms available that are not fully
intercompared and benchmarked.

* There are significant errors in current modeling efforts.

* The capacity for online simulation is quite limited and there are gaps
In process representation.

* Current efforts are bounded by the availability of data, computational
barriers and the capability of host large-scale models.
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An ideal representation
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Opportunities to move forward

* Data support
(1 Remote sensing technology
* Water resource management algorithms
d Formal intercomparison, parameterization and uncertainty assessments
d Enhanced algorithms
* Host models
d Grid resolution
( Sub-grid process representation
* Closing the water balance and online simulations
d Advancement in couplers
d Advancement in computations
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A suggested approach for model

development

A: Setup E: Parameter calibration/identification '
8: Climate modeling F: Falsification | F [ Rejection/learning }

C: Land-surface modeling | i

D: Water resource management I
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We have almost everyt

ing we need!

GEWEX REGIONAL HYDROCLIMATE PROJECTS

Baltic Sea Exporiment
Mackenzie GEWEX (BALTEX)

GEWEX Asla Monsoon
Experiments (GAME)

Program for the
(CPPA)

S

I Current RHPE
7/ Former RHP
ProspectivejRHP's

FROM TRANSALTA UTILITIES MODEL

TO SPECIAL AREAS WATER SUPPLY
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Many thanks for your attention!
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