Human processes in global hydrological models

Martina Flörke

GLASS and GHP Workshop Including Water Management in Large Scale Models

Gif-sur-Yvette, 28-30 September 2016

Overview

- 1. Selection of human processes
- 2. Model outcomes and analysis
- 3. Conclusions and next steps

Why do we need to consider human processes?

CEST

 Impacts: human and ecosystem health, food security

• Flow alteration: reservoir operation, water abstraction and consumption

Global Water Use: A Link Between Human Activities and Earth System Changes

CEST

Global Water Use: Where we are

CESR

Global Water Use: Where we are

CEST

Global water modeling framework WaterGAP

Impact: Water stress

Uncertainty of climate scenarios + ensemble GHM calculations

Impact: Water quality degradation

What is the level of salinity pollution and how does it impair water use?

CESR

Impact: Water quality degradation

What are the implications for food security?

151 million ha under irrigation in Asia
49-77 million ha at risk

Impact: Water temperature

Uncertainty of climate scenarios + ensemble GHM calculations

RCP2.6

RCP8.5

van Vliet et al. (2016)

Water temperature: Change in cooling water discharge capacity

RCP2.6

CESR

RCP8.5

- Global CWDC is expected to decrease by 4.5% to 15% in 2080
- Spatial patterns reflect changes in water temperature and river discharge 11

Closing the Loop Water availability \rightarrow Water use / Water quality degradation

Which feedbacks to include?

CEST

- Water scarcity \rightarrow Rationing, restricting domestic water use
- Geographic shift in water availability → Inter-basin transfers → Change in water use
- Water scarcity → Shift in form of electricity production (link to energy scenarios) → Change in electricity water use
- Change in water availability → Change in patterns of crop production
 → Change in moisture fluxes
- Water quality degradation → Relocation of water use → Change in irrigated area
- Change in water temperature → Change in cooling water discharge capacity → Allocation of thermal power plants

Reservoir management: Where we are

CESR

How does dam operation affect river flow regimes?

Flow alteration: Change in flood volume

Indicator of hydrological alteration: exceedance of bankfull flow

- Time series 1981-2010
- Thresholds for different levels of mean annual deviations
- Traffic light coding

CEST

River	Level of	Thresholds for reduction in flood	k
status	modification	volume	
A	not/ slightly	Δ ≤ 20%	
В	Moderately	20% <∆≤30%	
С	Significantly	30% <∆≤40%	warning
D	Seriously	∆ > 40%	ok danger

Reservoir management: Where we are

CESR

Water management: Riparian wetlands at risk

Schneider et al. (2016)

- >50% of selected Ramsar sites (total 93) impaired by reduced flood volumes
- > 29% seriously affected by reduction in flood volume
- Hydropower generation most frequent dam type

Reservoir management: Planning of new initiatives

Schneider et al. (2016)

- > New dams planned or under construction in 1/3 of upstream area
- > 37% are not yet impaired by water management
- Hotspots in South America (67%), Asia (60%), Africa (47%)

U N I K A S S E L V E R S I T A T

Closing the Loop Flow alteration \rightarrow Water management

Which feedbacks to include?

CESR

- Reservoir operation \rightarrow Reduction in flood volume
- Change in floodplain inundation \rightarrow Change in evaporation patterns

Conclusions and next steps

Water use / Water management – Important link between human dimensions and biophysical aspects of earth system

Water availability / Water quality – Hotspots relevant for feedbacks within the water cycle and between systems

Next Steps

LE25

- 1. Validation of outcomes with observations and remote sensing
- 2. Improve concept of water stress. Not only long term availability of water but seasonality and water quality aspects.
- 3. Include feedbacks between changing water availability, water quality and water use / water management

Thank you!

Martina Flörke floerke@usf.uni-kassel.de