

Towards water management in the SURFEX modeling platform :

Setting-up a satellite-driven hydrological system

C. Albergel, S. Munier, D. Leroux, D. Fairbairn , J.-C. Calvet Including Water Management in Large Scale Models Gif-sur-Yvette, France, 28-30 September 2016

 Modelling platforms including land surface models (LSMs), forced by gridded atmospheric variables, coupled to river routing models

(Dirmeyer et al., 2006)

- LSMs simulated biophysical variables
 - Fully consistent with surface flux and river discharge simulations
 - Initialized using remotely sensed observations through Land Data Assimilation System

SURFEX-CTRIP satellite-driven hydrological system

Including Water Management in Large Scale Models, 28-30 September 2016

SURFEX-CTRIP satellite-driven hydrological system

 ISBA-A-gs : simulates the diurnal cycle of water and carbon fluxes, plant growth and key vegetation variables on a daily basis
(Calvet et al., 1998, 2007, Gibelin et al., 2006)

Including Water Management in Large Scale Models, 28-30 September 2016

SURFEX-CTRIP satellite-driven hydrological system

- CTRIP : TRIP based river routing system with CNRM developments for global hydrological applications
- \rightarrow variable flow rate, flooding by overflowing rivers, aquifers

(Oki and Sud, 1998, Decharme et al., 2008, 2010)

Including Water Management in Large Scale Models, 28-30 September 2016

SURFEX-CTRIP satellite-driven hydrological system

 Initialize / constrain ISBA-A-gs biophysical variables using satellite derived observations through Land Data Assimilation System

SURFEX-CTRIP satellite-driven hydrological system

Model	Domain	Atm. Forcing	DA Method	R.S. Obs.	Observation Operator	Control variables
ISBA (CO ₂ responsive version, multilayer) CTRIP	Selected zone (0.5°, 0.25°) Global (1°, 0.5°)	ERA-Interim	SEKF	SSM [daily] (ASCAT-SWI, ESA-CCI) LAI [decadal]	Second layer of soil (1-4cm) LAI	First 8 layers of soil LAI

- Direct impact on soil moisture, leaf area index
- Indirect impact on
 - Water / CO2 fluxes
 - CTRIP variables (e.g. river discharge), daily coupling with ISBA

ISBA to CTRIP : runoff, drainage, groundwater and floodplain recharges CTRIP to ISBA : water table depth/rise, floodplain fraction, flood potential infiltration

Experimental set-up :

- Open-loop (Model) 1990-2010
- Analysis 1990-2010, LAI & SSM [ESA-CCI]

Analysis increments (averaged over 2000-2010)

System evaluation SSM (top) and LAI (bottom), 2000-2010
Model and Analysis Vs. assimilated observations

Impact on CTRIP river discharge (averaged over 2000-2010)

Including Water Management in Large Scale Models, 28-30 September 2016

- More evaluation is required (better selection of stations)
- Set up a specific case over Spain where more observations are available (eartH2Observe project)

- Representation of irrigation and agricultural practices
 - What do we have:
 - LAI is forced below a minimum value up to a sowing date
 - Add irrigation amount to precipitation forcing each time the simulated extractable soil moisture content reaches a predefined threshold (maize only)

- Representation of irrigation and agricultural practices
 - What do we have:
 - LAI is forced below a minimum value up to a sowing date
 - Add irrigation amount to precipitation forcing each time the simulated extractable soil moisture content reaches a predefined threshold (maize only)

- Representation of irrigation and agricultural practices
 - What do we have:
 - LAI is forced below a minimum value up to a sowing date
 - Add irrigation amount to precipitation forcing each time the simulated extractable soil moisture content reaches a predefined threshold (maize only)
 - What do we want:
 - Develop irrigation for all (most of) crops
 - Add irrigation amount to precipitation forcing each time the simulated extractable soil moisture content reaches a predefined threshold
 - Account for water availability!
 - Different irrigation methods (sprinkler, drip, flooding)

(Lawston et al., 2015)

- Account for agricultural practices (crops rotation)
- impact SURFEX ecosystem and surface parameters database (ECOCLIMAP)

 Representation of irrigation and agricultural practices (Lawston et al., 2015)

- Representation of reservoir / dam
 - Locate them on CTRIP digital global river network map
 - Set up operating rules

(Hanasaki et al., 2006)

Merci pour votre attention !

