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* Updates on selected DOE sponsored research

" Energy Exascale Earth System Model (E3SM) convective-
scale modeling

" Research on mesoscale convective systems (MCSs)
" Research on atmospheric rivers (ARs)

e Updates on DOE activities
" DOE Precipitation Metrics Workshop (July 2019)

=" DOE Atmospheric River Tracking Method Intercomparison
Project (ARTMIP) Workshop (October 2019)

= ARM Decadal Vision 2020
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Water vapor contours after 40 days of simulation with SP-E3SM
using a 28km global grid and CRMs with 64 internal columns

With the CRM ported to GPUs, a high-resolution
benchmark using all 4,600 nodes on Summit demonstrates
the computational capability of this effort in a realistic
climate simulation with a full-physics atmospheric model
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Pacific SP-E3SM improves precipitation diurnal cycle

Diurnal cycle of MCS and non-MCS precipitation (MJJA) over Central US
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SP-E3SM non-MCS

SP-E3SM MCS

E3SM MCS

(Jones et al. in prep)



\%/ SP-E3SM improves simulations of MCS precipitation
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wronat sorarory - SUPEr-parameterization improves the simulations, but biases are still large in summer
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A global nonhydrostatic simulation of
baroclinic instability using simple physics at
3 km grid spacing

A global nonhydrostatic realistic simulation
using full physics at 3 km grid spacing
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Turbulent eddies in water vapor at 500 hPa

00:00:04:00

EBSiVifconviective-scale modeling

Snapshot of precipitation (color) and liquid water path (opacity
with opaque white = 200 g m2) after 1 hr of simulation




How do MCSs influence surface hydrology and land-
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MCS and non-MCS precipitation has distinct surface hydrologic response
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MCS and non-MCS precipitation have distinct surface hydrologic response
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\z/ AR induces large anomalies of precipitation
northwest  With hydrologic impacts in western U.S.
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(a) non-AR (b) non-AR lc) AR {d)AR AR: more intense precipitation,

pre-existing snow no pre-existing snow | no pre-existing snow | pre-existing snow

A e | N5y | WHpe warmer temperature, higher

05 . net radiation

5.50

A e With pre-existing snowpack:
A‘ « R/P=0.74 for AR events
« R/P =0.38 for non-AR events

e Without pre-existing snowpack:
« R/P=0.43 for AR events
« R/P =0.32for non-AR events
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e Rain-on-snow events amplify
the hydrologic impacts of ARs

(Chen et al. 2019 JGR)
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AR frequency explains over 40% of ARs sharpen the runoff seasonality,
p interannual variance of water availability in reducing April 15t snowpack and
| F coastal western U.S. summer runoff
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. Inspired by the lack of objective and systematic benchmarking of and the need to improve
precipitation simulated by Earth System Models

« Community input via DOE 2018 AGU Town Hall and international modeling working groups

. Date/venue: July 1-2, 2019 in Rockville, MD
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Workshop organizing committee:
Peter Gleckler (LLNL), Christian Jakob (U. Monash), Ruby Leung (PNNL),
Angie Pendergrass (NCAR)
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Identify salient features, Select quantifiable Assess relevant
processes, or use cases aspects of these foci observational data

Pre

Evaluate models to
establish a baseline

(Inter)compare models Improve models Evaluate models
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Baseline metrics
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* Alimited set of observed characteristics to be used for model benchmarking

* Only require observed and simulated precipitation data

e Divided into tier 1 (e.g., global and annual mean) and tier 2 (e.g., regional and
seasonal) and to be applied to a common set of simulations (e.g., CMIP6 DECK)
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 Benchmark increasingly diverse
aspects of precipitation to meet the
needs of different user
communities (model developers,
earth system scientists, impact
researchers and stakeholders)

e Often require more than just
precipitation data

Exploratory metrics
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Exploratory Metrics
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Process-oriented
Metrics
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Regime-oriented
Metrics

N

p
Use-inspired
Metrics

\

Diurnal cycle of
precipitation

Frontal precipitation

Fraction of wet days

Character of the
distribution of

precipitation rates

Extratropical +
tropical cyclones

Average length of
consecutive wet
periods

Emergent
constraints on

precipitation

Mesoscale
convective systems

Decorrelation time
of precipitation

Orographic
precipitation

Monsoonal
precipitation

Intensity-duration-
frequency curves

Teleconnections

Weather states

Correlated extremes
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* The Atmospheric River Tracking Method Intercomparison Project
(ARTMIP) was launched in 2016

* First ARTMIP workshop (2017): Tier 1 experiments using MERRA
reanalysis

e Second ARTMIP workshop (2018): Tier 1 results and Tier 2
experiments using C20C+ and CMIP5/6 historical simulations

* Third ARTMIP workshop (2019)

* Tier 1 and Tier results

* Defined 4 new Tier 2 experiments: Tier 2 Reanalysis, Tier 2 High-
Latitude, Tier 2 MPAS-ENSQO, and Tier 2 paleo-ARTMIP

* Expert identification of ARs and other weather phenomena for
machine learning
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\%/ Gaps and priorities identified at the third ARTMIP
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* Go beyond existing AR detection w
algorithms that are primarily 2D to

consider the AR 3D structure " (A

* Develop open-source computational
framework to facilitate implementationof .
existing and new AR detection algorithm

e Research to determine the different
flavors of ARs and detection methods =
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7 ARM Decadal Vision: 2014
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Decadal Vision strategic plan identified five focus areas:

e Establish observation modeling “megasites” at the SGP and

- in the arctic

s * Produce routine high-resolution simulations over ARM sites
E’ * Continued focus on measurement excellence
= e Specifically called out aerosol instruments, scanning radars, and
_8 CLIMATE RESEARCHFAGILITY & 4 frozen precipitation
- Decadal Vision * Develop UAS/TBS capabilities and review possible G-1
@ j | replacement

= S * Enhance data products and processes

e Continue to improve the discoverability of ARM data

* Improve the characterization and communication of data quality

* Use DOIs to better link data to background information

* Integrate ARM data with other BER measurements and
simulations

e Strengthen interactions with the user community
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https://www.arm.gov/about/future-directions
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ARM is drawing on input from many sources to update its long-term plan:

 DOE CESD strategic plan and other DOE guidance

e Community input including
* DOE and ARM workshop reports

 ARM constituency groups (e.g. User Executive Committee)
* Input from ASR meetings and other information gathered by the working groups

(e.g. surveys)
* Information gathered at science conferences and meetings of partner
organizations (including GEWEX, other agencies, and related observatories in the
EU)
* Input from ARM staff including
* Data services and instrument mentor meetings

* Input gathered through the change management process

.
R’I\illn Decadal Visionf™

A




