Introduction to dynamic irrigation models in Noah-MP

Fei Chen Research Applications Laboratory, NCAR

Contributors: Michael Barlage, Valayamkunnath, David Gochis, Roy Rasmussen (NCAR); Xing Liu and Dev Niyogi (Purdue U), Zhe Zhang and Yanping Li (U Saskatchewan), Xiaoyu Xu (Nanjing University of Information Science and Technology), Tongren Xu (Beijing Normal University)

5 November 2021, GLASS/GHP Irrigation Initiative meeting

Agriculture Lands and Management in the U.S.

- 90% of some regions in Great Plains are agricultural lands.
- Irrigation in most Ag regions ~40% of total freshwater withdrawals.
- Extensive use of subsurface tile drainage in Upper Mississippi River Basin (UMRB).
- These ag processes modify surface and energy budgets and influence weather and climate

Agriculture Modeling Related Projects (NCAR/RAL/HAP)

- NSF/USDA EaSM (collaboration with ASU): couple urban and agriculture models to the Weather Research and Forecasting (WRF) model coupled to Noah-MP.
- NSF INFEWS (collaboration with GMU): develop field-scale irrigation forecast to save 10% irrigation water in Nebraska.
- NOAA JTTI (collaboration with ISU): improve representation of crop/irrigation/tile-drainage processes in the operational National Water Model using the Noah-MP.
- NCAR Water System: crop-atmosphere interactions in WRF 4km regional climate simulations over CONUS.
- Understand the crop-water-atmosphere nexus from continental scales to field scales
- Develop modeling tools to predict crop yield and irrigation demand for Ag decision systems

Soil Moisture [volumetric]

Field scale evaluations using AmeriFlux data from 1) Bondville, IL (2001, 2003, 2005), corn, rainfed; and 2) Mead, NE (2002, 2004, 2006), soybean, rainfed.

Noah-MP-Crop Model Framework

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE 10.1002/2016JD025597

Noah-MP-Crop: Introducing dynamic crop grow in the Noah-MP land surface model

Key Points:

• 1.Noah-MP-Crop is able to capture the

Xing Liu¹, Fei Chen², Michael Barlage², Guangsheng Zhou³, and Dev Niyogi¹

UCAR

Develop a tile drainage parameterization and high-resolution mapping of tile drained croplands for National Water Model

Implemented the Hooghoudt equation-based tile-drainage parameterization.

30-m AgTile-US data: Valayamkunnath et al. 2020: Scientific Report.

Impact of tile-drainage modeling on surface water cycle: Valayamkunnath et al. 2021: WRR, in review

The new tile-drainage improved National Water Model streamflow prediction (Valayamkunnath et al. 2021)

NWMV2.1

Simple Tile Drainage

Hoogoudt's Tile Drainage

Development of Dynamic Irrigation Schemes for Noah-MP

- Implemented a new dynamic irrigation scheme in Noah-MP and the National Water Model
 - Consider three methods of irrigation
 - Consider sprinkler evaporation
 - Use irrigation area data and Leaf Area Index to constrain models
 - Trigger function = Management allowable deficit (MAD)

(Application rate <= soil intake rate)

Data used to constrain irrigation models

500-m MODIS Global (Salmon et al., 2015)

250-m MIrAD-US (USGS)

Global 30-second Global: Meier et al., (2018)

 Overestimated irrigated area compared to MIrAD-US

USGS irrigation census based data

Well-Captured the MIrAD-US irrigated area pattern compared to MODIS Global

Data used to constrain irrigation models

- 30-meter USDA/GMU crop frequency data
- 250-m MIrAD-US (USGS) for US and Meier's 30-seoncd for globe
- U.S. state-level planting and harvest data, 1/2° climate spatially-varying GDD for crop growth

Data Source: USGS County-level water use 2015

JAMES Journal of Advances in Modeling Earth Systems

RESEARCH ARTICLE 10.1029/2018MS001595

Lessons Learned From Modeling Irrigation From Field to Regional Scales

Key Points:

 A dynamic irrigation scheme was incorporated into Noah-MP, using soil moisture availability and crop Xiaoyu Xu^{1,2} (D), Fei Chen³ (D), Michael Barlage³ (D), David Gochis³ (D), Shiguang Miao² (D), and Shuanghe Shen¹

Enhance irrigation scheme by including GDD (growing degree days): Activate irrigation: GDD>280 for corn, GDD >560 for soybean

NCAR UCAR

Joint simulation of crop growth and irrigation for central U.S.

UCAR

Well simulated corn yield in rainfed region

Simulation without irrigation underpredicted yield in irrigated region (Nebraska)

Journal of Advances in Modeling Earth Systems

RESEARCH ARTICLE 10.1029/2020MS002159

Key Points:

- Joint modeling of crop growth and irrigation improves crop-yield simulation in irrigated regions
- Applying the state-level planting date helps improve the

Joint Modeling of Crop and Irrigation in the central United States Using the Noah-MP Land Surface Model

Zhe Zhang^{1,2} ^(D), Michael Barlage³, Fei Chen³ ^(D), Yanping Li^{1,2} ^(D), Warren Helgason^{1,4} ^(D), Xiaoyu Xu⁵ ^(D), Xing Liu⁶ ^(D), and Zhenhua Li^{1,2}

Irrigation fraction (%) on 1km NWM grid

IRR_FRAC IRR_LAI IRR_MAD FILOSS SPRIR_RATE MICIR_RATE FIRTFAC IR_RAIN

Continental-scale irrigation-model calibration over 747 heavily-irrigated counties and regionalization

Irrigation model parameters

= 0.10 ! Irrigation Fraction

- = 0.05 ! Minimum LAI to trigger irrigation
- = 0.50 ! Management Allowable Deficit (0-1)
- = 0.10 ! fraction of flood irrigation loss (0-1)
- = 6.40 ! mm/h, sprinkler irrigation rate
- = 1.38 ! mm/h, micro irrigation rate
- = 1.00 ! flood application rate factor
- = 1.00 ! maximum precipitation to stop irrigation trigger

USGS county-level irrig water amount (mm)

UCAR

Spatial distribution of calibrated parameter distribution

Management Allowable Deficit

Sprinkler Rate (mm/h)

County-level comparison of irrigation model performance: Default Vs Calibrated Bias (%)

With calibrated parameters

- Irrigation scheme generally underestimated irrigation water
- Calibration improvements low biases, especially over the heavily irrigated counties of the CONUS.

Irrigation and Ag modeling allows for assimilating more and new land-related data

Develop a multi-pass land data assimilation scheme (MLDAS) based on EnKF and Noah-MP-Crop to jointly assimilate satellite soil moisture and crop data: leaf area index (LAI), and solarinduced chlorophyll fluorescence (SIF).

JAMES Journal of Advances in Modeling Earth Systems

RESEARCH ARTICLE 10.1029/2020MS002394

Key Points:

 The Multipass Land Data Assimilation Scheme (MLDAS) is proposed based on the Noah-MP-Crop model

Leaf area index (LAI), soil moisture (SM), and solar-induced chlorophyll fluorescence (SIF) measurements are assimilated into the MLDAS to predict sensible heat flux (H). latent

Improve the Performance of the Noah-MP-Crop Model by Jointly Assimilating Soil Moisture and Vegetation Phenology Data

Tongren Xu¹ ^(D), Fei Chen² ^(D), Xinlei He¹ ^(D), Michael Barlage², Zhe Zhang³ ^(D), Shaomin Liu¹ ^(D), and Xiangping He¹

¹State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resource, Faculty of Geographical Science, Beijing Normal University, Beijing, China, ²National Center for Atmospheric Research, Boulder, CO, USA, ³School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada

Hydroclimatic impacts of crop irrigation

Impact of irrigation on air temperature simulated by Earth system models:

- Insignificant (Fowler and Helvey 1974)
- 0.5 C° reduction(Sacks et al 2009)
- 3.7 C^o reduction (Kueppers et al 2007)
- 10 C^o reduction (Lobell et al 2009)

NCAR

• Why such discrepancies in ESM simulations?

Environmental Research Letters

CrossMark OPEN ACCESS	LETTER
	Memory of irrigation effects on hydroclimate and its
3 January 2018	Fei Chen ^{1,2} , Xiaoyu Xu ^{3,4,6} , Michael Barlage ¹ , Roy Rasmussen ¹ , Shuanghe Shen ³ , Shiguang Miao ⁴ and
REVISED	Guangsheng Zhou ⁵

LATE TO A CALLER LED TO COMPARE THE LOLE CO

Hydroclimatic impacts of crop irrigation

- Irrigation reduce air temperature by ~1 C°, increase water vapor by 1 g/kg, reduce sensible heat flux by 25 W/m2; the memory last ~ 10 days
- Bigger impact and longer memory for corn

Using 10-year AmeriFlux data over nearby irrigated and non-irrigated sites, Mead, Nebraska.

Lessons learned

- Capturing the timing of irrigation (important for land-atmosphere interactions, PBL) is more challenging than modeling the irrigation amount
- Calibration of key irrigation model parameters seems necessary; need to develop parameter regionalization strategies
- Need more observations to evaluate and constrain models
- How to transition irrigation models from field to regional to global scales?
- How to transition irrigation models from one region to another? Human-, and crop specie – dependent
- How to reduce uncertainties in modeling irrigation in ESMS?

Thank you!

