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The need for downscaling

Idea of downscaling: Data from global climate models are typically inadequate for
regional and local impacts assessment. Must create higher spatial and temporal
resolution information that better represents the meteorology and climatology, that is
more suitable for impacts assessment purposes (e.g. water resources, ecosystems,
natural hazard management, agriculture, etc.)

Two possible downscaling routes

Statistical: Develop an empirical relationship between large-scale climate and regional
climate metrics based on historical data, and then apply to future global model
projection

Dynamical: Apply a full-physics (typically limited area) regional climate model over a
specific domain of interest to generate a higher resolution simulation.




Statistical or Dynamical Downscaling
Which is “right” way to go?

Statistical

Simple and inexpensive
Many realizations
Relatively easy to apply

Pros

Stationarity problem
Cons Underestimates extremes
No physical process basis

EMPHASIZES REDUCTION OF
STATISTICAL UNCERTAINTY

Dynamical

Represents physical processes
Lots of variables available
Characterize extremes
Accounts for non-stationarity?

Relatively few realizations
Computationally expensive
Requires training, experience

EMPHASIZES REDUCTION
OF PHYSICAL PROCESS
UNCERTAINTY



The seductive paradigm of the “cloud of points
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Full 112-Member BCSD CMIP 3 Ensemble Projection:
Lees Ferry gauge for Upper Colorado
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Flg. 6. (a) Simulated 30-yr average streamflows of the Colorado River at Lees Ferry AZ, 1979
through 2099. (b) The mean monthly average streamflows for the three future projection peri-
ods, compared with the historical 30-yr period flow ending in 1999.

Harding et al. (2012, HESSD)

Assumptions

Greater reduction in uncertainty
with more ensemble members, or
the “bigger cloud”

Mean of the multi-model
ensemble is our most confident
metric because of cancellation of
model error

But what should Bureau of
Reclamation do if dynamical
downscaling would yield a
substantially different result than
BCSD, but with far fewer
members??
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One of the most debated tables by the authors in
writing of this report....

TABLE 4 Recommendation Table on the Use of Climate Datasets based on Regional Features*

Dynamic
Statistical Downscaling Methods Downscaling GCM
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Scale
Global scale: ~3,000 km or more,
weeks to months (general circulztion
structure, jet stream posifion)
Synoptic scale: 100-3,000 km,
days to weeks (highs and lows,
mudlatitude cyclones, monsoons,
atmosphenic teleconnections)
Course mesoscale-a. f:
10-100 km, hours to days
(katabatic winds, weather fronts.
mesoscale convective systems.
tropical cyclones. sea breeze
curculations)
Fme mesoscale-y: 1-10 km, hours
to minutes
(supercell thunderstorms. tomadoes,
zust fronts, awr mass thunderstorms,
mountam-valley winds, mountain
snowfall)




What causes extreme precipitation in the West?
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Projecting Water Resources in the Colorado
Basin Using Dynamical Downscaling
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Studies using various approaches:

1. Seageretal. 2007; Seager et al.
2013

Milly et al. 2005

3. Christensen et al. 2004;
Christensen and Lettenmaier,
2007; Cayan et al. 2010; USBR
2011a

Gao et al. 2011; Rasmussen et al.
2011

Gao et al. 2012

Hoerling and Eischeid 2007
Cook et al. 2004

Woodhouse et al. 2006; McCabe
and Wolock 2007; Meko et al,
2007; USBR 2011a

climate data

N

Climate

g

O NSO

Land
surface

Abbreviations:

GCM - Global Climate Model

RCM - Reglonal Climate Model

PDSI ~ Palmer Drought Severity Index

P —Precipitation

T~ Temperature

R = Runoff

£ - Evaporation

S. downscaling — statistical downscaling

Management
Impact

FiG. |. Approaches to generating future projections. Dotted lines indicate
possible future studies. Land surface models (LSMs) are often incorporated
into GCMs and RCMs, or they can be run (usually after downscaling) offline,
in which case they use output from climate models (e.g., precipitation, tem-
perature, wind speed) and essentially serve as macroscale hydrology models.
Paleoclimate data can also be used to evaluate and improve how GCMs
simulate historical climate.

Vano et al. (2014, BAMS)



Statistical
Downscaling

Bias Correction and
Spatial Disaggregation
(BCSD)

BOR Calibrated VIC
hydrologic model

Statistically Downscaled
Streamflow using BCSD

Dynamical
Downscaling

Regional Climate Model

NARCCAP

UA-WRF: MPI, HadCM3

New Parametric Bias
Correction (BC-UA)

BOR Calibrated VIC
hydrologic model

Dynamically Downscaled
Streamflow using BC-UA

Non Parametric Bias
Correction (NP-BC) of
BCSD

BOR Calibrated VIC
hydrologic model

Dynamically Downscaled
Streamflow using NP-BC
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FiG. 6. Comparison of BCSD downscaling from C&L with a delta-
method downscaling approach for Lees Ferry in the 2040-69 future
period for A2 emission scenarios. On average, the BCSD approach has
a decline in streamflow of 7% (average values of 93%), whereas with the
delta method, declines are 13% (average values of 87%). Differences
are the BCSD approach minus the delta-method approach.

Vano et al. (2014, BAMS)
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Figure 4. Comparison of model-derived snowfall for the period 198 1-2005 winter ( December-March)
to observed snowfall for three different latitudinal bands and seven altitudinal bands. Each period is
averaged in space, and shows total snowfall for the winter (December-March) season.

Wi et al. (2012, JGR-Atmos.)



Monthly Total (mm)

Simulated vs. observed precipitation and

streamflow at Lees Ferry:
1971-2000 historical period

(a) Upper Colorado (d) Upper Colorado
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Dusy. Mukharjee et al. (in preparation)



Bias in Downscaled Simulated to Observed
Upper Colorado streamflow at Lees Ferry:
1971-2000 historical period
BCSD vs. NARCCAP + UA WRF RCMs
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Dynamical downscaling leads to reduced bias in representation of historical
streamflow, generally independent of high and low flows. The regional
modeling component is main reason why, not choice of bias correction
technique.

Mukharjee et al. (in preparation)



Downscaled CMIP3 Projected Absolute Changes in Upper Colorado
River Precipitation and Streamflow: 2041-2070 minus 1971-2000
BCSD vs. NARCCAP + UA WRF RCMs
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Downscaled CMIP3 Projected % Changes in Upper Colorado
River Flow: 2041-2070 minus 1971-2000
BCSD vs. NARCCAP + UA WRF RCMs
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Greatest difference between a statistically

- BCSD CMIP3 Ens. vs. dynamically downscaled stream flow
projection occurs for highest flows.

Mean - BCSD CMIP3 Ens. On order of 10-20% lower streamflow
during peak flows with dynamical
downscaling!

Mukharjee et al. (in preparation)
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Downscaled CMIP3 Projected % Changes in Salt and Verde
Streamflow (Lower Colorado Basin within Arizona):
2041-2070 minus 1971-2000
BCSD vs. NARCCAP + UA WRF RCMs
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The potential decreases on the smaller
rivers that are the lifeblood of the SRP
system may be even more dramatic

than for the Upper Basin!
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CMIP5 minus CMIP3 BCSD climate projections
From Bureau of Reclamation

Mean-Annual Precipitation Change, percent
CMIPS5 - CMIP3, 1970-1999 to 2070-2099, 50%tile

15 10 5 0 5 10 15

Projected Southwest drying trend is not as dire in AR5




Projecting changes in monsoon severe weather
events using convective resolving modeling
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Predominant monsoon severe weather hazards in the Southwest U.S.

Will these hazards potentially worsen with climate change?




Monsoon Thunderstorms in Arizona

Monsoon thunderstorms at Kitt Peak at mature
stage with gust fronts.

Forced by the diurnal mountain
valley circulation

Form over the mountains
during late morning to early

afternoon

Reach mature stage by about
mid-afternoon.

(Photo taken around 3pm)
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Nesbitt et al. (2008)

Convective organization and
propagation

Convective clouds form over the mountains
in the morning.

By afternoon and evening storms propagate
to the west towards the Gulf of California
where they can organize into mesoscale
convective systems if there is sufficient
moisture and instability.

It’s likely that a convective-permitting
resolution (less than 5 km) is necessary to
represent this process correctly in regional
models. Global models pretty much fail.



Inverted trough: Favors upward motion
and vertical wind shear

Pytlak (2005)



An active monsoon day...




NARRCAP Ensemble
Results

Note in some cases there
can be differences in the
sign of precipitation
projections among RCMs
even when forced by the
same CMIP3 GCM.
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Figure 3: JA average precipitation change (%) from the baseline period. Hatching indicates where the change

is statistically significant at the 0.1 level

Bukovsky et al. (2015, J. Climate)



Technical Approach

Dynamical downscaling to address severe weather question

Radar reflectivity of simulated\

WRF—MP! JJ precip organized convection in Arizona
A - : » | . .
45 ~ 7 PR “ ;|
Long-term (Y [ Simulate ’ ‘
dynamlcgl » °  identified '
downscaling ~ severe ;
as RCM i weather T S,
events in N D L
RCM A
simulation /
Select CMIP3 and 5 models Baseline WRF long term regional High resolution numerical weather
& global reanalysis climate model simulations for prediction type simulations
1-2.5° resolution historical and future periods 2.5 km resolution

35-50 km resolution

Yields climate change projection results that simulate possible changes in extreme events in
a physically-based way, using a well-established modeling paradigm for weather

forecasting.



Daily average precipitation WRF hi-res modeled vs.
observed for favorable severe weather events (2002-2010)

Stage v Observanons CMIP3 MPI CMIP3 HadCM3

Widespread precipitation in Southwest, with maxima on terrain

CMIP paradigms generally comparable to Stage IV Luong et al. (in preparation)
Presented at 2015 AGU Fall meeting



Changes in the atmospheric environment for monsoon
thunderstorms during the last thirty years in
downscaled NCEP reanalysis

Thermodynamic conditions Dynamic conditions
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Figure 2: JA differences in downscaled reanalysis (1980- Figure 3: Top: conceptual model of inverted trough
2010 minus 1950-1979) for convective available potential (Iv) from Pytlak et al. (2005). Bottom: Difference in
energy (CAPE, J kg*) and precipitable water (PW, mm). IV track density (1980-2010 minus 1950-1979) during
Operational radiosonde sites indicated. (Jares et al., in peak of the monsoon (mid-July to mid-August).
preparation) Differences field significant at 93% level. (Lahmers et

al., submitted).



Observed Change in Early and Late Warm Season
Precipitation Climatology in CPC dataset:
1980-2010 minus 1950-1980

CPC precip climatology anomaly [AS] (%)

L N

45°N 45°N |
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250N 40 25N
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Recent observational record seems to comport with “wet gets wetter, dry gets drier idea”

More monsoon precipitation, but tending to occur mostly in mountainous areas. More
thermodynamically favorable, but less dynamically favorable.

Chang et al. (2015, JGR Atmos.)
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Figure 5: CPC mean and extreme (top 5%) precipitation

locally significant trends (1991-2010 minus 1951-
1970) (mm day?) for the period JA using a peak-over-
threshold method for extremes.

Luong et al. (in preparation)
Presented at 2015 AGU Fall meeting



Coop Observed at PHX ~-NCE , -

= 1991-2010 m— 1991-2010
= 1951-1970 -‘: = 1951-1970
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Figure 6: Coop station comparison of probability
distribution of daily precipitation extremes to downscaled
reanalysis severe weather events for Phoenix using peak-
over-threshold method (mm day*) for the period JA.

Frequency
Frequency

mm

Luong et al. (in preparation)
Presented at 2015 AGU Fall meeting



Figure 7: Downscaled reanalysis extreme (top 5%)
precipitation and mean precipitable water trend (1991-

2010 minus 1951-1970) [mm day]

Luong et al. (in preparation)
Presented at 2015 AGU Fall meeting



™

1%

. o,
E ¥ ¥

I ¥ G ¥ ¥ %

Figure 7: Trend in downscaled
reanalysis  locally  significant
extreme (top 5%) precipitation
(mm day—!) and surface wind
speed (m s?1) (1991-2010 minus
1951-1970), for period JIAS using
a peak-over threshold method.

Luong et al. (in preparation)
Presented at 2015 AGU Fall meeting



WRF-HadCM3 CMIP3

WRF-ECHAMS CMIP3

WRF-ECHAM®6 CMIPS
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Figure 9: Near future projected extreme (top 59’ ) prec:p/tat/on trends (2021-2040 minus 1991 2010) [mm day?]
from downscaled CMIP3 HadCM3 (left), CMIP3 ECHAMS (middle), and CMIP5 ECHAMEG (right)

Luong et al. (in preparation)
Presented at 2015 AGU Fall meeting



How is monsoon precipitation
changing in the Southwest?

From the perspective of convective-permitting climate modeling

* Long-term increase in atmospheric moisture and instability in the

Southwest over the past sixty years.

* While mean daily monsoon precipitation in the Southwest has
decreased, observations show that extreme monsoon precipitation
has become more intense during the days with the most favorable
thermodynamic and dynamic conditions.

* A more favorable thermodynamic environment in the Southwest U.S.
is facilitating stronger organized monsoon convection based on the

past sixty years of observations and reanalysis

Consistency in results (so far) with dynamically downscaled
CMIP3 and CMIP5 model paradigms for future projections
suggest anthropogenic climate change is the likely driver...



Joint PDF Changes in Intensity, Duration
Downscaled reanalysis: 1990-2010 minus 1950-1970

Example of final translation of information to facility scale

n AR

Barry Goldwater Range, AZ - Difference

Rain rate (mmvhr)

Change in normalized PDF

Will consider future projections, multiple variables of interest for weather
forecasting purposes per operational threshold criteria of 25t OWS.



Interannual variability: Teleconnections at

monsoon onset (late June, early July)
e.g. Castro et al. (2001, J. Climate)

El Nifo

Ridge ENP

La Nina

WC
CNP Trough
warm o sture/\'

TOL owers

Moisture
Transport

\

El Nifo
High NPO Phase

La Nina
Low NPO Phase

Fio. 14. Idealized relationship of monsoon ridge position and midlevel moisture transport to

Pacific 85Ts at monsoon

ongset.

The onset and variability of North
American Monsoon System (NAMS) is
partly controlled by warm season
atmospheric teleconnections

Teleconnections driven El Nifo
Southern Oscillation (ENSO) and
Pacific Decadal Variability (PDV)

Influence monsoon ridge positioning
in early summer.
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Relationship to atmospheric
circulation anomalies
Teleconnection response
Quasi-stationary Rossby wave train

Relationship to sea surface
temperature anomalies
ENSO, Pacific decadal
variability drive variation in
tropical convection

Ciancarelli et al. (2013, Int. J. Climatol.)



Boreal warm season atmospheric teleconnections
Per classifications of Ding et al. (2011, J. Climate)

Western Pacific North Circumglobal
America Pattern (WPNA) Teleconnection (CGT)

ENSO/PDV Forced: Early summer ()))

(a) Probably most seasonally predictable
w -

(ay CGT Mode 1
-

Figure 15. (a) Cartoon illustrating the CGT atmospheric teleconnection
Figure 14. (a) ldealized atmospheric teleconnection pattern associated  pattern associated with JJ REOF 2 (likely associated with the CGT).
with JJ REOF 1 (ENSO/PDV forcing dominaat). (b) Idealized atmo- () Cartoon illustrating the CGT atmospheric telecoanection pattern
spheric teleconnection pattern associated with AS REOFI (likely  aesociated with JJ REOF 5 (likely associated with the CGT). Wet/dry
dependent on Asian monsoon convection). Wet/dry areas over the areas over the United States indicated by blue/red.
United States indicated by blue/red.

Ciancarelli et al. (2013, Int. J. Climatol.)



Current warm season seasonal forecast skill in North

American Multimodel Ensemble (NMME)
Kirtman et al. (2014, Bull. Amer. Meteor. Soc.)

All NMME Models CFSv2 only
(a) -0.0070 (b) -0.051
E
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Ranked probability skill score

FiG. 9. Precipitation forecast RPSS for the (a) grand NMME multimodel
ensemble and for (b) CFSv2. The skill is based on hindcasts initialized in Jan
1982-2009 and verified in the following JJA seasonal mean for tercile forecasts.
Positive values indicate probabilistic skill that is better than climatology, and
negative values indicate probabilistic skill that is worse than a climatological
forecast. Global-averaged RPSS is noted in the figure.



Are skillful seasonal monsoon forecasts
possible? Castro et al. (2012, J. Climate)

REOTI[JJ.SPI(_WRF-CFS)] 18.7% (1.982':90)
= A = -

Global seasonal forecast models,
such as the CFS do have an ability to
statistically represent WPNA
response and its impact on warm
season precipitation.

For skillful warm season forecasts, a
seasonal forecast GCMs must have
an ability to deterministically
represent warm season atmospheric
teleconnections.

o 60 120 8 120 s0'w o

A high resolution (convective-
permitting) RCM would probably
then add value, given its ability to
FI1G. 18. (top) Most highly correlated mode of early warm season (JJ) SPI in WRF-CFSin 2
comparison to first three REOF early warm season SPI modes from WRF-NCEP, shown as mUCh bét‘ter represent Orga ﬂlléd

the regression on the principal component with vanance explained. Specifically. this mode is o

most I-mi_ghly correlated with the second REOF from WRF-NCEP at a value of 0.44 with COﬂVQCt‘IOh.
significance exceeding the 95% level. (middle) Corresponding PC correlation on normalized

500-mb geopotential height anomalies from CFS. (bottom) Corresponding PC correlation on

CFSSSTA.

o 60°C 120 180¢ 120 60°W o



Early summer (JJ) precipitation
anomaly correlation for NAME Tier 2 Region

WRF Downscaled
CFS model CFS model

a(P—NOAA,CFS)

Castro et al. (2012, J. Climate)



Multi-RCM Ensemble Downscaling
of multi-GCM Seasonal Forecasts (MRED)

« Test usefulness of downscaling winter seasonal forecasts
from global models by using an ensemble of regional
models.

* Downscale 23 years of winter (December-April)
reforecasts from the NOAA CFS global seasonal forecast
model (T62L64, ~1.9° lat/lon).

 Domain is the coterminous ‘,?ve;,-:e at/lon(0.375) 1.2'.4'6.7N—49.
U.S. at grid spacing 32 km. | £ R

 Downscaled each member of
a 10 member CFS ensemble
for each winter 1982-2004.
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These types of applications are informed by a process of co-
production of knowledge with stakeholder users...




Discussion period at the end of workshops
is the most important part!




Vision of a potential future at the University of
Washington

Assume a leadership role in developing the idea of regional climate modeling center, for
producing customized, client-driven applied science deliverables and research needs.

In a teaching capacity, to develop or maintain existing graduate courses in the
department in regional atmospheric modeling and climate data analysis, with greater
emphasis on statistical characterization of extremes. Additionally, a translational course
that would emphasize stakeholder engagement.

Improve the projection of hydroclimate, using integrated high resolution atmospheric
and hydrologic physical modeling with ensemble approaches, demonstrating the

potential value added. Intraseasonal to seasonal timescales is a ripe opportunity and
highly desired.

Emphasize international outreach in my research activities, with special emphasis on
Latin America, that builds on my recent Fulbright Fellowship at the National
Autonomous University in Mexico City.

To work with UW faculty to develop outreach programs in atmospheric and related
sciences to underrepresented groups.



