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_Cloud Feedback Model E’rercoﬁaﬁson Project.

»

« For nearly two decades, the frade-cumulus cloud feedback has remained a major source of uncertainty for climare sensitiviry
(e.g. CMIP3: Bony & Dufresne 2005, CMIP5 & CMIP6: Vial et al. 2013, Myers et al. 2021)

« Recent sarellite studies suggest that many models exhibit a foo sfrong cloud feedback in shallow cumulus regimes

« In climate models, frade cumulus feedbacks are governed by changes in cloud fraction near cloud base, with
high climafte-sensitivity models suggesting a dessication of the lower cloud layer when the lower-fropospheric mixing increases
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- How?nuch is C (cloud fraction near cloud base)
controlled by M (mass flux) and RH (relafive humidity

e Dynamical and thermodynamical controls
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» Coupling between convection and hlI‘r'ﬁidiW »
(e.g. through entrainment)

- Evidence for mixing-dessication mechanism ?
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Dropsondes measurements

Dh
= - M+ W Relative humidity (RH),

dt Subcloud layer height (h), Entrainment (E),
and mesoscale vertical velocity (W)
near the cloud-base level inferred

Cloud layer A Entrainment rate A
1 y I / albright et al, 202 I from dropsonde measurements (HALO)
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Mixing-dessicafion mechanism ?
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M=5r4+W

(D—h small)
dt

on monthly fimescale :

M= L

but on shorter fimescales (3-hourly, daily) :

- [~ and W contribute equally to variability in M
- I~ and W have opposing effects on humidity

- E and RH are anti-correlared
but M and RH uncorrelated

at odds with the mixing-dessication hypothesis

Vogel et al. (in revision)



Cloud fraction near the cloud-base level

Horizontally-pointing radar
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“Thermodynamical and dynamical controls of clouds

C= aRHﬁ + aMﬁ+a0
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Relative humidity, saturation deficit
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Dynamical control of clouds

r=0.72
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Thermodynamical and dynamical confrols of clouds

Because mesoscale mofions and entrainment
confribute equally to variability in mixing,
but have opposing effects on humidity,
mixing does not desiccate clouds.

Vertical motions

Dynamical
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Vogel et al. (in revision)
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‘Thermodynamical anc ynamical conftrols of the cloud-base cloud fraction

C = agyRH + ayM+a, The dynamical control of clouds overwhelms
a the thermodynamic control through humidity
_ r=0.83
+ L Relative humidity, saturation deficit Vertical motions

ol — | Thermodynamical a Dynamical
control of clouds M control of clouds
i X ARy
T T v 1 ™ 1 ™ 1 EUREC‘A

3 4 5 6 7 8
Reconstructed C (%)

Vogel et al. (in revision)



@ EUREC’A data
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Comparison wifth climate model outputs

High-frequency CFMIP model outputs (cfSites)
from CMIP models near Barbados

Mean and variability of M, RH, C differ a lot among
models and between models and observations



Comparison wifth climate model outputs

» High-frequency CFMIP model outputs (cfSites)
from CMIP models near Barbados

« Mean and variability of M, RH, C differ a lof among
[ | models and between models and observations
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» High-frequency CFMIP model outputs (cfSites)
from CMIP models near Barbados

« Mean and variability of M, RH, C differ a lof among
models and between models and observations
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(a) Observations at BCO
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Daily cycle of clouds at the Barbados Cloud Observafory
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Daily cycle of clouds at the Barbados Cloud Observatory
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cfSite outputs

(a) Observations at BCO
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EURECAA observations do not support the mixing-dessication mechanism at work in a number of models.

The daily cycle of cloudiness is an excellent testbed tfo understand and assess the processes underlying
frade-cumulus feedbacks

EUREC“A and BCO observations suggest that trade-wind clouds are more dynamically confrolled by
convective and mesoscale mofions than thermodynamically confrolled by humidity variations

Models that do not represent (or not sufficiently) the dynamical control of clouds :
- exagerafe the sensifivity of clouds to humidity, exagerate cloud variability, and tend to predict StCu instead of Cu
- predict a stronger radiafive feedback under climate change

These observational, process-based constraints :
- Connect the models’ cloud feedback processes to the representation of physical processes
— Render models with a strong shallow cumulus feedback implausible



