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Introduction

* [tis well established that aerosols significantly impact

weather and climate.
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 Within models, aerosol interactions are most often

represented in:

Low resolution climate models with low complexity

High resolution chemistry models with high complexity
Within radiation or microphysical parameterizations, but
not convective parameterizations

* Relatively little work has been done to add aerosol impacts in

convective parameterizations in operational weather
prediction models

Objective

Develop methods to represent aerosol — convection interactions

within the Grell-Freitas Convective Parameterization that:

1. Capture impacts of aerosols on convection

2. Remains computationally efficient enough for operational

weather forecast models

The Grell-Freitas Convective
Parameterization (GF)

* First published in Grell and Freitas (2014, ACP)

Subsequently updated in: Freitas et al. (2018, JAMES) and
Freitas et al. (2021, GMD)

e Versions of the code are available for use in WRF, RAP, FIM,
FV3, GEOS-5, BRAMS

 Used in both global and regional applications

e Basic features:

Ensemble mass-flux approach

Shallow, congestus, and deep convective represented
Includes updrafts and downdrafts

Scale —aware

Aerosol —aware (Added in 2014, but not extensively tested
until recently)

e Aerosol —aware features:

In the most simple application Aerosol Optical Depth
(AOD) used as a measure of aerosol pollution

* (Can be obtained from a climatology, an analysis, or an
aerosol model (ex: GEFS-Aerosols, WRF-Chem)

Aerosol impact based on how far the AOD at a given point
is from an assumed background AOD p resent when the
cloud to rain conversion constants were originally derived

 Makes aerosol impacts most notable in very clean or
very polluted environments

Processes influenced by aerosols
e Auto-conversion - cloud water to rain (Berry 1968)
e Evaporation of rain (Jiang et al. 2010)

* Aerosol wet scavenging (Lee and Feingold 2010, Wang
2013)

Active in congestus and deep convection
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Aerosol — Aware GF: Single-Column Model (SCM) Results

Three FV3 Single-Column Model simulations assuming

different pollution levels in GF

1) Very clean, 2) Polluted, 3) Very polluted

* Uses the GFSv16 physics suite except with GF and 127
vert. levs

Precipitation efficiency is greater in Very Clean than
Polluted and Very Polluted

e Physically reasonable: Increased pollution ->
Smaller particles -> less precipitation fall out

Time Series of GF Precipitation Efficiency during TWO - ICE
wviean rrecipitation ciriciency

O Very Polluted
Polluted

0.6 Clean
0.5 (\/\
0.4

0.3

0.2

Mean Precipitation Efficiency

9]

0.0
1/19 1/20 i1 /2 /22 1/23 1/24
Model Time (MM/DD/2006)

Aerosol — Aware: 3D FV3 Results

 Two global FV3 C786 Simulations
* 1) GF aerosol - aware, 2) GF No aerosols
* GFSv16 physics suite with GF for SAS and 127 vertical
levels
* |nitialized from GFS analysis and MERRA2 AOD
climatology
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Thompson (THMP) Aerosol — Aware Microphysics Parameterization

THMP also has aerosol —aware _

capabilities i

* Currently, THMP aerosol emissions
create too many aerosols over o]
tropical oceans W

We have a new, more realistic
prognostic method for THMP e T (THMP
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Using THMP with prognostic variables addresses
some of the precipitation biases, especially in the
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Aerosol — Aware GF + Thompson Aerosol — Aware Microphysics Parameterization

* Traditionally, aerosols in GF and THMP are completely

independent

 We have coupled our prognostic THMP aerosols
with GF’s aerosols

Two simulations:

1) GF aerosols based of MERRAZ2, 2) GF from
prognostic THMP

* GSL physics suite, C786, 128 levels, 1 case

Changes in convective precipitation demonstrates that

GF can now respond in a physically reasonable manner

to aerosols in THMP
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Conclusions

 The Grell-Freitas Convective
Parameterization (GF) is a scale —
aware, aerosol —aware convective
parameterization

* This research continues to develop and
extensively evaluate the aerosol —
awareness aspects of GF

* GF strives to represent aerosol-
convection interactions as simply
and computational efficient as
possible, while remaining physically
reasonable

* Relatively few convective
parameterizations include aerosol —
convection interactions, especially in
medium range weather models

e Testing and evaluation indicate that the
aerosol— aware aspects of GF are
responding in physically reasonable
manners

* |Increased pollution -> smaller &
more numerous particles -> less
precipitation fall out

e Results also suggest that aerosol —
awareness impacts both updraft and
downdraft mass — flux

* A new, efficient, prognostic method
was developed to represent aerosol
emissions in resolved and unresolved
precipitation physics
* Prognostic emissions (wildfires, sea

salt, dust, anthropogenic) are
lumped into just 2 variables

 (Can also be used to couple with GF
and radiation

Future Work

* Run using observation or modeled

AOD initial conditions and a realistic
background AOD

e Evaluate model performance in
regions with high and low AOD
* Develop code so that GF can respond
to the full 3D structure pollution

e Add aerosol-awareness to the shallow
component to GF

e Compare to high-resolution WRF
Chem or LES simulations

* Test the impact of aerosol-awareness
at subseasonal — to — seasonal time
scales with GEFS or GEFS-Aerosols data

e Evaluation for WGNE 19-year S2S
comparisons
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