Fine-scale atmospheric dynamics and ice microphysics

Aurélien Podglajen¹, Thomas Lesigne², François Ravetta²

1: LMD-IPSL, Paris, Palaiseau, France 2: LATMOS-IPSL, Paris France

aurelien.podglajen@lmd.ipsl.fr

UTCC-PROES meeting- Paris, May 19, 2025

Outline

 Connection with APARC (Atmospheric Processes and their Role in Climate) activities

- Strateole-2 long-duration balloon observations of vertical wind and tropical clouds
- - Atmospheric dynamics and cirrus in the tropical tropopause layer

UTCC-PROES/APARC: shared interests

 APARC OCTAV-UTLS (Observed Composition Trends And Variability in the Upper Troposphere and Lower Stratosphere): understanding Cloud Radiative Effect and dynamical impacts

Emig et al., 2025

UTCC-PROES/APARC: shared interests

- APARC OCTAV-UTLS (Observed Composition Trends And Variability in the Upper Troposphere and Lower Stratosphere): understanding Cloud Radiative Effect and dynamical impacts
- APARC FISAPS Fine Scale Atmospheric Processes and Structures: small-scale turbulence in clear-sky and near clouds; fine-scale mixing

UTCC-PROES/APARC: shared interests

- APARC OCTAV-UTLS (Observed Composition Trends And Variability in the Upper Troposphere and Lower Stratosphere): understanding Cloud Radiative Effect and dynamical impacts
- APARC FISAPS Fine Scale Atmospheric Processes and Structures: small-scale turbulence in clear-sky and near clouds; fine-scale mixing
- APARC gravity wave activity:
- role of convection and convective organization in wave generation
- - its evolution in a changing climate.
- - representation of vertical wind in models

- Over the last decade, advance of global kilometer-resolution models
- Increasing fraction of the vertical wind (w) spectrum is resolved

Is it realistic ??

PYAMOND models vs HIMAWARI

- Over the last decade, advance of global kilometer-resolution models
- Increasing fraction of the vertical wind (w) spectrum is resolved

•Is it realistic ??

LOON w balloon measurements and DYAMOND models

- Over the last decade, advance of global kilometer-resolution models
- Increasing fraction of the vertical wind (w) spectrum is resolved

•Is it realistic ??

W spectrum in the ECMWF model run at various resolutions

Politchouck et al., 2023

LOON w balloon measurements and DYAMOND models

- Over the last decade, advance of global kilometer-resolution
- Increasing fraction of the wind (w) spectrum is res

•Is it realistic ??

W spectrum in the ECMWF mode

Politchouck et al., 2023

We are still in the grey zone for vertical wind

No convergence, even with kilometer scale models

nd DYAMOND models

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 w (ms⁻¹)

Outline

 Connection with APARC (Atmospheric Processes and their Role in Climate) activities

- Strateole-2 long-duration balloon observations of vertical wind and tropical clouds
- - Atmospheric dynamics and cirrus in the tropical tropopause layer

Superpressure balloons: an observational platform for dynamics and clouds

- Drift horizontally following the flow: quasi-Lagrangian behavior, relevant for physical processes
- ~3-month flights at 18-20 km
- Measurement of **T** and **w** (@ 30 s)
- 4 tropical campaigns since 1998
- Latest vintage = Stratéole 2

Stratéole 2 flight trajectories 2021-2022

Vertical wind

- Superpressure balloon measurements provide time series of vertical wind (W) fluctuations
- emphasize ubiquitous W variability related to gravity waves
- Intermittent amplitude of the waves. Why ?

Gravity wave relationship with convection

- Wave activity decreases away from convection
- High-frequency wave amplitude decrease faster

Ratio of variances all-frequencies /High-frequency

Distance to convection

Corcos et al., JGR, 2021

Clouds from balloons

BeCOOL: The Balloon-borne Cirrus and convective overshOOt Lidar

Light-weight elastic lidar

- Single wavelength : 802 nm
- Vertical resolution : 15 m
- Temporal resolution : 1 min
- Flight level : 20 km
- Nighttime observations only

Strateole-2 2021-2022

- 3 BeCOOL flights
- 127 nights of observation

Clouds from balloons

Lesigne et al., 2024

Clouds scenes observed from balloons

Balloon-borne observations: lifecycle perspective

• Balloons move slowly relative to the cloud field

• Possibility to assess cirrus lifetime (assuming ergodicity, in paritcular no diurnal cycle)

• 90 % of the clouds are shorter than 12 hours, but they represent only 30 % of the coverage

• Application to other type of clouds ?

Lifetime range	$\tau < 1~{\rm h}$	$1~\mathrm{h} < \tau < 6~\mathrm{h}$	6 h < $\tau < 12$ h	12 h < τ
Percentage of clouds	50~%	32~%	8 %	$10 \ \%$
Effective Coverage	3~%	15~%	12~%	71~%

 \rightarrow Multi-layered TTL cirrus with thin (<100 m) persistent high-backscatter layer embedded within a lower backscatter cloud

- \rightarrow Multi-layered TTL cirrus with thin (<100 m) persistent high-backscatter layer embedded within a lower backscatter cloud
- \rightarrow reminiscent of ???

 \rightarrow Multi-layered TTL cirrus with thin (<100 m) persistent high-backscatter layer embedded within a lower backscatter cloud

 \rightarrow reminiscent of ???

 \rightarrow Multi-layered TTL cirrus with thin (<100 m) persistent high-backscatter layer embedded within a lower backscatter cloud

 \rightarrow reminiscent of local spikes in ice crystal number from airborne observation (ATTREX)

 \rightarrow Multi-layered TTL cirrus with thin (<100 m) persistent high-backscatter layer embedded within a lower backscatter cloud

 \rightarrow reminiscent of local spikes in ice crystal number from airborne observation (ATTREX)

 \rightarrow What resolution is needed to simulate this feature ? Does it matter ?

Summary and outlook

- Need for better observational constraint and modelling efforts on vertical wind
- Balloon-borne observations: « lifecycle » perspective on clouds
- high-resolution reveal new features of the cloud field (foliated structures, thin clouds)
- Fine vertical scale structures remain below model resolution: need for dedicated "macrophysics" parameterization in UTLS cirrus for radiation, dynamics and microphysics ?

• Thank you for your attention

