Small-scale processes and their coupling to radiation
in tropical cirrus: A key to anvil climate feedback?
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Actively convecting & precipitating part covers only a small
fraction of the tropics (~1%)

On the other hand, aged clouds spread, thin, and cover about
30% of the area of the tropics
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Anvil lifecycle: from reflective, rainy convective cores to
long-lived semi-transparent thin cirrus
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Part 1: What shapes anvil cloud properties?




A number of processes are at work, many interacting with
each other and the large-scale environment
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Sedimentation is quick in removing large crystals

 Large ice crystals sediment (precipitate)

out in the first 2-3 hours

 Ice mass loss partially counteracted by

depositional growth
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Most ice crystals should fall to lower levels after 5-10 hours

Typical ice sedimentation: 1ol
40 ym diameter (very small): 4 cm/s
1.5 km/10 hours

80 um diameter:

3 km/10 hours

150 um diameter (large): 15 — 30 cm/s
« 6—-11km/10 hours
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But tropical anvil lifetimes are way longer
What keeps them aloft?

Relative ice mass



Cloud radiative heating (CRH) thins and spreads the anvil

SAM cloud resolving model simulation, “convection in a box” setup

Control 575 h No CRH 575 h

Net CRE Net CRE
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How does cloud
radiative heating
influence the
spreading?

Anvil spreading

Wall et al., 2020 \ ~"\

« Radiatively-driven circulation
counteracts sedimentation
* Also drives cloud spreading

» Supported based on idealized
& realistic modeling (e.g.
Ruppert et al., 2019) +

observations (Deng and Mace,
2008, Wall et al., 2020)



Microphysical cycling

@Q0
How does cloud Wall et al., 2020

radiative heating

influence the « Heating dipole drives
spreading? convection within anvils
« Strong enough to nucleate
ice crystals

« Small, stay up for very long
Hartmann et al., 2018, Sokol and Hartmann, 2020

= disputed, hard to veryify
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Radiation and ice nucleation play important roles in anvil lifecycle
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Ilce nucleation (driven by
radiation-generated turbulence)
Is crucial in prolonging the anvil
cloud lifetime.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
time [days]

"

Hartmann et al., 2018

3.000
1.000

0.300 _

0.100 'o

0.030 &, Beware:
ggég very idealized modeling!
0.001 11




Ice nucleation occurs quite frequently within aged anvils

SAM model tropical channel simulations = much more realistic modeling
Total condensed water
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Part I: What shapes anvil properties?

Anvils results from interactions of multiple processes:

« sedimentation/precipitation formation
» deposition/sublimation
* ice nucleation (?)



Part ll: Anvil responses to global warming




Uncertainties in anvil responses to warming largest for thin anvils

fractional change in freq(IWP)
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Changes in the amount of anvil
cloud ice from a multimodel
ensemble:

robust response for thick anvils,

a large spread for thin anvils

multimodel mean

Sokol et al., 2024



Uncertainties in anvil responses to warming largest for thin anvils
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Radiative transfer calculations show an increase in CRH
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20

=
(9

cloud

=
o

altitude [km]

NET
LW
SW
-2 0 2 4 6 8 10
heating rate [K day~!]

Gasparini et al., 2024

Cloud with FIXED properties
(cloud optical depth =1,

ice water path = constant)
approx. fixed cloud temp.
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Radiative transfer calculations show an increase in CRH

a) SST=295K
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The increase in CRH is explained by a decrease in density
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Satellite data also show an increase in CRH in warmer years @%
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15-year satellite dataset based on
infrared sounder data trained on

2B-FLXHR (Stubenrauch et al., 2021)
Gasparini et al., 2024

Response of satellite retrieval to warming
comparable to CRH changes in models
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cloud fraction as % of full domain

Implication 1: CRH increase leads to more opaque and

shorter-lived clouds e
/E%O. .
/77//73
PDF of Cloud optical depth (COD) %
1.6
14 Median COD: 1.0
1.2 0.9
1.0
1.8
0.8
— >
0.6 //'
0.41 — 30°C
34°C
02 —— 38°C
0.0 10-1 100 101 102
COD

|dealized cloud evolution
pathways initialized with

same cloud in SAM RCE
simulations

Intial state
u‘h
<P

Net CRE
0. -75.0 0.00 75.0 15(

21



altitude

Implication 2: The importance of high clouds in driving
circulations increases in warmer world

Cloud radiative heating
drives large-scale
dynamics and its
response to global

warming (e.g. Voigt et al.,
2021, Dinh et al., 2023).

Dinh et al., 2023
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The lower the pressure, the larger the sedimentation velocity
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Ice crystal sedimentation
increases when clouds move
upward to lower pressures

1
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see also Ohno et al., 2021: impact on anvils in idealized simulations
partially Sokol and Hartmann, 2022: impact on atmospheric ice



Pressure dependence of the depositional growth equation

Ice crystal evolution, RHi = 80%, T = 220K
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The diffusivity of water vapor increases as pressure decreases because the
mean free path of molecules becomes larger
=>» water vapor can leave the ice crystal surface more easily, enhancing shrinking
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Quantifying feedback based on their mechanisms:
still a long way to go!

Change per K surface warming Feedback
Quantity Mechanisms Theory Simulations | Observations | W m2 K-
cloud fraction expanding troposphere: stability “1t0-4% 7 | -2+4% [|°cd | -7+£2% 2 | 0.03+£0.1 |?
iris; circulation & microphysics
optical depth unknown \ 0to-4% |°f 1+5 % 2 | 0.08+0.1 [>ef
sedimentation expanding troposphere: pressure- | ~1 % 1 | 06% | \ \
dependence
deposition expanding troposphere: pressure- | ~5 % ' | small | \ \
dependence, circulation change
cloud radiative | expanding troposphere: pressure- | ~3 % K | 0to 5% | \ \
heating dependence
temperature expanding troposphere: stability \ unclear |' 0.58-086K |™ | <0 B0

change; ozone change
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pressure/density decrease thermodynamics

1P cloud radiative heating increas..e in CAPE and
A microphysics storm intensity

‘I water vapor
(Held and Soden physics,
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Changes in anvil cloud properties, their radiative effects, and climate feedbacks -




Conclusion

At the process level, the feedback mechanisms of high
clouds, especially opacity, remain poorly

How can they be included in the broader context of
tropical cllmate responses to warming?
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We know anvil spreading is
important because
have longer lifetimes
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« Radiatively-driven circulation
counteracts sedimentation
* Also drives cloud spreading

» Supported based on idealized
& realistic modeling (e.g.
Ruppert et al., 2019) +

observations (Deng and Mace,
2008, Wall et al., 2020)
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Another possible effect of radiation on the anvil lifecycle
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1. Cloud top cooling and
cloud base warming

dipole

1. Driving turbulent kinetic
energy (TKE) and in-
cloud convective motions

1. In-cloud convection leads
to the formation of
numerous small ice
crystals

Hartmann et al., 2018

Beware:
very idealized modeling!




Radiative turbulence nucleates ice crystals, prolonging anvil lifetime
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The mechanism is robust across models

| cloud radiative heating , cloud fraction RCEM | P data
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Despite a mean cloud fraction decrease,
cloud radiative heating increases!

Gasparini et al., 2024 35



