Small-scale processes and their coupling to radiation in tropical cirrus: A key to anvil climate feedback?

Blaž Gasparini, University of Vienna & many other collaborators

Actively convecting & precipitating part covers only a small fraction of the tropics (~1%)

On the other hand, aged clouds spread, thin, and cover about 30% of the area of the tropics

Anvil lifecycle: from reflective, rainy convective cores to long-lived semi-transparent thin cirrus

Total condensed water + rain

Part 1: What shapes anvil cloud properties?

A number of processes are at work, many interacting with each other and the large-scale environment

Sedimentation is quick in removing large crystals

- Large ice crystals sediment (precipitate) out in the first 2-3 hours
- Ice mass loss partially counteracted by depositional growth

Most ice crystals should fall to lower levels after 5-10 hours

Typical ice sedimentation:

40 µm diameter (very small): 4 cm/s

• 1.5 km/10 hours

80 µm diameter:

• 3 km/10 hours

150 µm diameter (large): 15 – 30 cm/s

6 – 11 km/10 hours

Note: humidity typically quite low below cloud layers (→ sublimation)

But tropical anvil lifetimes are way longer What keeps them aloft?

Cloud radiative heating (CRH) thins and spreads the anvil

Anvil spreading

Wall et al., 2020

- Radiatively-driven circulation counteracts sedimentation
 - Also drives cloud spreading
 - Supported based on idealized & realistic modeling (e.g.

Ruppert et al., 2019) + **Observations** (Deng and Mace, 2008, Wall et al., 2020)

How does cloud radiative heating influence the spreading?

Microphysical cycling

Wall et al., 2020

How does cloud radiative heating influence the spreading?

- Heating dipole drives
 convection within anvils
- Strong enough to nucleate ice crystals
- Small, stay up for very long

Hartmann et al., 2018, Sokol and Hartmann, 2020

→ disputed, hard to veryify

Radiation and ice nucleation play important roles in anvil lifecycle

Ice nucleation occurs quite frequently within aged anvils

SAM model tropical channel simulations **→** much more realistic modeling

Total condensed water

Part I: What shapes anvil properties?

Anvils results from interactions of multiple processes:

- sedimentation/precipitation formation
- deposition/sublimation
- ice nucleation (?)

Cloud radiative heating as an "impact multiplier"

Part II: Anvil responses to global warming

Uncertainties in anvil responses to warming largest for thin anvils

Uncertainties in anvil responses to warming largest for thin anvils

Radiative transfer calculations show an increase in CRH

Gasparini et al., 2024

Radiative transfer calculations show an increase in CRH

Gasparini et al., 2024

The increase in CRH is explained by a decrease in density

Gasparini et al., 2024

Satellite data also show an increase in CRH in warmer years

Implication 1: CRH increase leads to more opaque and shorter-lived clouds

Idealized cloud evolution pathways initialized with same cloud in SAM RCE simulations

Implication 2: The importance of high clouds in driving circulations increases in warmer world

Cloud radiative heating drives **large-scale dynamics and its response to global warming** (e.g. Voigt et al., 2021, Dinh et al., 2023).

Dinh et al., 2023

The lower the pressure, the larger the sedimentation velocity

see also Ohno et al., 2021: impact on anvils in idealized simulations partially Sokol and Hartmann, 2022: impact on atmospheric ice

Pressure dependence of the depositional growth equation

Ice crystal evolution, RHi = 80%, T = 220K

Sublimation of an ice crystal at <u>fixed RH</u> and <u>temperature</u> but **varying pressure**.

Ohno et al., 2021: impact in idealized simulations Gasparini et al., 2021 impact in a high-res GCM

The **diffusivity** of water vapor **increases** as pressure decreases because the **mean free path of molecules becomes larger**

→ water vapor can leave the ice crystal surface more easily, enhancing shrinking

Quantifying feedback based on their mechanisms: still a long way to go!

		Change per K surface warming			Feedback
Quantity	Mechanisms	Theory	Simulations	Observations	W m ⁻² K ⁻¹
cloud fraction	expanding troposphere: stability iris; circulation & microphysics	-1 to -4 % ^a	-2 ± 4% ^{b,c,d}	-7 ± 2% ^a	0.03 ± 0.1 ª
optical depth	unknown	١.	0 to -4% ^{e,f}	11± 5 % ^a	0.08 ± 0.1 ^{a,e,f}
sedimentation	expanding troposphere: pressure- dependence	~1 % ^g	0.6 % ^h	1	1
deposition	expanding troposphere: pressure- dependence, circulation change	~5 % ⁱ	small ^j	1	1
cloud radiative heating	expanding troposphere: pressure- dependence	~3 % ^k	0 to 5% ^k	1	1
temperature	expanding troposphere: stability change; ozone change	1	unclear	0.58-0.86 K ^m	< 0 ^{n,o}

Changes in anvil cloud properties, their radiative effects, and climate feedbacks

Conclusion

At the process level, the feedback mechanisms of high clouds, especially opacity, remain poorly

How can they be included in the broader context of tropical climate responses to warming?

We know anvil spreading is important because day anvils have longer lifetimes

Anvil spreading

Ē

- Radiatively-driven circulation
 counteracts sedimentation
- Also drives cloud spreading
- Supported based on idealized & realistic modeling (e.g.

Ruppert et al., 2019) + **Observations** (Deng and Mace, 2008, Wall et al., 2020)

Another possible effect of radiation on the anvil lifecycle

Cloud top cooling and 1. cloud base warming dipole

3.000

0.100 b 0.030 م ص

0.010 0.003

0.001

6

day⁻¹

- Driving turbulent kinetic 1. energy (TKE) and incloud convective motions
- 1. In-cloud convection leads to the formation of numerous small ice crystals

Hartmann et al., 2018

Beware: very idealized modeling!

Radiative turbulence nucleates ice crystals, prolonging anvil lifetime

3.000 -1.000 - 0.300 പ 0.100 m 0.030 م ص 0.010 0.003 0.001

3000 1000

300 100

30

- 10

- 3

#

шĦ

- 1. Cloud top cooling and cloud base warming dipole
- Driving turbulent kinetic 1. energy (TKE) and incloud convective motions
- In-cloud convection leads 1. to the formation of numerous small ice crystals

Hartmann et al., 2018

Beware: very idealized modeling!

The mechanism is robust across models

RCEMIP data RCE_large domain simulations from 13 cloud resolving models (Wing et al., 2020)

Despite a mean cloud fraction decrease, cloud radiative heating increases!