Changes in UT clouds deduced from IR sounders & synergistic dataset to link convective organization & atmospheric heating

GEWEX UTCC PROES workshop, Paris, France, 20 Mai 2025

Motivation & approach

Climate warming :

can we detect changes in UT clouds so far?

change in tropical convective intensity & organisation ?
 -> size & emissivity structure of cirrus anvils
 -> heating gradients -> large-scale circulation

To advance our understanding on UT cloud feedbacks, we are coupling

- **cloud-top properties**: from IR Sounder, *sensitive to Ci* (day-night) & good instantaneous coverage (Stubenrauch et al. ACP 2017)
- Eulerian Cloud System Concept: relating cirrus anvil properties to convection (Protopapadaki et al. ACP 2017)
- vertical structure & rain areas within UT clouds: from CALIPSO-CloudSat & ML (Stubenrauch et al. 2023)
- **3D diabatic heating**: radiative from CALIPSO-CloudSat & ML & latent from TRMM & ML
- Lagrangian Convection Tracking: based on cold T_B^{IR} (Fiolleau et al. 2020) & precipitation (Takahashi et al. 2021)
- metrics of convective organisation: (Mandorli & Stubenrauch 2023)
- **simulation experiments**: study changes in atmospheric circulation for different situations of convective organization

-> quantify dynamical response of climate system to atmospheric heating

Clouds from IR Sounder (CIRS)

AIRS

≥2002 : 1:30 AM/PM

IASI (1,2,3), IASI-NG ≥2006 / ≥ 2012 / ≥ 2020 : 9:30 AM/PM

Stubenrauch et al., ACP, 2017

- >good IR spectral resolution -> sensitive to cirrus
- similar performance day & night, $COD_{vis} > 0.1$, also in the case of lower clouds underneath
- ➢ good areal coverage
- distinction between opaque & semi-transparent UT clouds by using emissivity

CIRS data produced & distributed by AERIS: Retrieval adapted to ERA5 ancillary data & new production:

2003-2018 (ERA-Interim ancillary data) https://cirs.aeris-data.fr/ 2003-2024 (ERA5 ancillary data, AIRS L1C data) evaluation still in progress, in particular for 2024 due to Aqua time drifting

results similar sensitivity to Cirrus slightly below CALIPSO slight improvements over land during day compared to L3 data from updated GEWEX Cloud Assessment Database *Stubenrauch et al. 2024* https://gewexca.aeris-data.fr/

Can we detect changes in UT clouds due to warming in our current climate ?

30N30S 2004-2023

preliminary

Changes in tropical UT clouds

- changes are very small and therefore very difficult to detect
- ENSO signal often stands out as major driver of variability in climate records (Liu et al. 2021)

- CIRS: very slight decrease of annual high ice cloud amount
- This decrease stems from reduction during months with maximum amount (reduction of variability) Which type of UT clouds are these ?

CALIPSO high cloud anomalies (sparse sampling & short time series) inconsistent between both retrievals

Radiative effects of UT clouds depend on their optical depth /emissivity

Net Cooling of lower atmosphere (low clouds) over cool ocean Net Warming of atmospheric column (UT clouds) over warm ocean

Changes in UT clouds dependent on their emissivity

- AIRS-CIRSera5 2004-2023
- UT clouds: p_{cld} < 350 hPa
- linear trend in time per emissivity interval
- assuming dTs/dt = 0.5 K/decade

tropical UT cloud emissivity distribution is shifting: very thin & very thick UT clouds decrease towards middle

Changes in UT cloud types: cool & warm regions

• Do opaque clouds thin out or do convective towers / thick anvils shrink ?

30N30S, AIRS-CIRSera5 2004-2023

- $\circ~$ Get very thin Ci thicker or do they disappear ?
- Where is this happening ?

Geographical changes in UT cloud type occurrence

30N30S, AIRS-CIRSera5 2004-2023

- very thin UT clouds decrease in regions of deep convection
- ITCZ with very thick UT clouds seems to narrow

Synergistic dataset to describe UT cloud systems 3D/4D

3D snapshot reconstruction using synergistic data & Machine Learning add heating rates & precipitation

rad. heating & precipitation: CloudSat-lidar on narrow nadir tracks

Latent Heating:LT within 20 min of 1h30 AMTRMM radar : small coverage at specific LT

expand vertical structure & precipitation across AIRS / IASI swaths via ANN:

1) develop regression & classification models,

training on collocated data (AIRS-CloudSat-lidar 2007-2010, AIRS-TRMM 2004-2015, IASI-TRMM 2007-2015)

2) apply these models on the whole CIRS data record (2004-2018)

use derived atmospheric properties (similar for AIRS & IASI) :

X : CIRS cloud variables & ERA-Interim atmosphere, surface

F(X) : CloudSat-lidar radiative heating rates, Z
from NASAZ
FLXHR v4Z
GEOPROF,Cloud layering, rain rateTRMM latent heating rates from NASA SLH v6

snapshots of horizontal structures

Tropical deep convective organization

derived from spatial distribution of convective objects

1) How to define convective objects

2) How to define organization metrics

Indices:

lorg	(Tompkins et al. 2017)
ROME	(Retsch et al. 2020)
СОР	(White et al. 2018)
SCAI	(Tobin et al. 2013)

Example **lorg**: considers : cumulative nearest neighbour & random distribution lorg 0-1lorg = 0.5 no organization lorg > 0.5 organization

Inter-annual variability of tropical deep convective organization

convective organization not easy to quantify

Stubenrauch et al. ACP 2023

Inter-annual variability of indices not coherent: *signal too small* Pattern changes in ACRE wrt indices may be more robust (large signals, similar to ENSO)

& single index to describe convective organization may not be sufficent

Size distribution of strong rain areas a better proxy?

systematic assessment of indices:

Mandorli & Stubenrauch GMD 2024 DOI:10.5194/qmd-17-7795-2024

ACRE pattern changes wrt lorg

600

Process-oriented behaviour of mesoscale convective cloud systems

Eulerian Cloud System Concept using \mathbf{p}_{cld} & $\boldsymbol{\epsilon}_{cld}$

Stubenrauch et al. ACP 2023 Stubenrauch et al. JAMES 2019

proxy for convective depth: min T within core of mature systems *Mature MCSs:* convective core fraction 0.2-0.4

Deeper convection leads to:

larger heavy rain areas

larger areas of surrounding thin Ci

slightly thinner anvils

CIRS-ML Synergy with Lagrangian convection tracking

combine MCSs from tracking to anvil properties

How is Cirrus & its heating related to deep convection & its organization ?

TOOCAN: cold mesoscale convective systems fine spatial & temporal resolution tracking yields life time & stage, maturity size

-> cold T_B (& precipitation) tracking miss anvil parts

CIRS-ML: large envelopes of UT cloud systems with additional information (HR, LH, thin Ci & anvil properties)

MODIS: much better spatial resolution than CIRS: still large envelopes of UT cloud systems !

dissipating stage: long-living MCSs thicker & higher than short-living MCSs

Conclusions & Outlook

> Synergy of different satellite instruments provides a more complete picture of clouds

complete 3D snapshots & longer time series by ML (CIRS-ML)
-> convective organization & process studies

- Eulerian Cloud System Concept allows
 - to study relationships between convection & anvils
 - process-oriented evaluation of GCM parameterizations

Synergy of UT cloud envelopes & Lagrangian MCS Concept adds life time & life stage to study relationship between convection & thinner parts of anvils

- CIRS data recently reprocessed (changing ancillary data from ERA-Interim to ERA5): 2003-2024 after evaluation will be distributed via https://cirs.aeris-data.fr/
- > Data record shows interesting features in UT cloud changes
- > To reprocess the more complete CIRS-ML dataset, colocation and retraining of ANNs necessary

CIRS-ML 3D cloud structure dataset distributed at *https://gewex-utcc-proes.aeris-data/fr/data*

2004-2018: on AIRS swath at 1:30 AM & PM, spatial resolution of 0.5°, netCDF format

Stubenrauch et al. ACP 2017

TOOCAN Tracking of organized convection (> 2012) at *https://toocan.ipsl.fr/*

Fiolleau & Roca 2013

Discussion points for complete 3D / 4D description of UT cloud systems

- > Colocation: which data should be taken, in particular for radiative heating rates ?
- ANN prediction good for means, but not for extremes: are there better methods to combine with latent heating ?
- Cloud system data: would this dataset be useful to distribute?
- AIRS data drifting (2:30AM/PM in Jan 2025) & will end in 2026 similar ANN approach with other cloud data ? ISCCP-NG + EarthCare + GPM + ... ? GEO-RING of advanced multi-spectral imagers since 2018

