Why the Tropical High-Cloud Feedback is Positive

Jakob Deutloff, Julia Windmiller, Stefan A. Bühler, Ann Kristin Naumann

AQUAPLANET ENSEMBLE

AQUAPLANET ENSEMBLE

Setup:

- ICON Sapphire without convective parameterization (Hohenegger et al., 2023)
- Interactive ozone (Cariolle and Teyssèdre, 2007)
- Three months of simulation at 5 km horizontal grid spacing

Three Simulations:

- Control
- ≻ +2 K
- ≻ +4 K

Intuitive understanding of cloud radiative effect (CRE):

- Thin clouds warm
- Thick clouds cool

Thin clouds are more frequent than thick ones:

Mean CRE is positive in ICON (3.7 W m⁻²)

High resolution enables ice water path perspective:

- Satellite observations (Berry and Mace, 2014; Gasparini et al., 2019)
- Idealized simulations (Sokol et al.,
 - 2014; Gasparini et al., 2025)

HIGH-CLOUD FEEDBACK WITHIN THE IWP FRAMEWORK

Change in Cloud Radiative Effect

FAT / PHAT (Hartmann and Larson, 2002; Zelinka and Hartmann, 2010) ► LW *C(I)*

Stability Iris (Bony et al. 2016)
➢ Anvil thinning found by Sokol et al. (2024)

Albedo Feedback (McKim et al. 2024)

FREQUENCY OF HIGH CLOUDS IN THE TROPICS

FREQUENCY OF HIGH CLOUDS IN THE TROPICS

FREQUENCY OF HIGH CLOUDS IN THE TROPICS

REDUCTION OF ANVIL CLOUDS AND INCREASE OF THIN CIRRUS WITH WARMING

Two counteracting responses to warming:

- Decrease of intermediate thickness clouds
- Increase in cirrus clouds

HIGH CLOUD FREQUENCY FEEDBACK IS NEAR NEUTRAL

STABILITY IRIS MECHANISM EXISTS

$$C \sim CSC = \partial_z \left(\frac{H}{\Gamma_d - \Gamma} \right) = \partial_z \left(\frac{\text{Radiative Cooling}}{\text{Stability}} \right)$$

 Γ_d : Dry Adiabat *H*: Clear Sky Radiative Heating Rate

Γ: Lapse Rate C: High-Cloud Fraction

STABILITY IRIS MECHANISM EXISTS – BUT IS WEAK

INCREASE IN CLOUD RADIATIVE HEATING MIGHT CAUSE CHANGES IN HIGH CLOUD FREQUENCY

- Heating Dipole for intermediate thickness clouds
- Heating throughout for cirrus

INCREASE IN CLOUD RADIATIVE HEATING MIGHT CAUSE CHANGES IN HIGH CLOUD FREQUENCY

- Heating Dipole for intermediate thickness clouds
- Heating throughout for cirrus
 - Both intensify with surface warming
 - Result of lower density as clouds rise to lower pressure with surface warming (Gasparini et al., 2024)

INCREASE IN CLOUD RADIATIVE HEATING MIGHT CAUSE CHANGES IN HIGH CLOUD FREQUENCY

- Increased Heating dipole for intermediate thickness clouds
 - → Decrease Cloud Lifetime Hartmann et al. (2018)

Increased Heating of Cirrus

→ Increase Cloud Lifetime Gasparini et al. (2022)

CHANGES IN HIGH-CLOUD RADIATIVE EFFECT

12

CHANGES IN HIGH-CLOUD RADIATIVE EFFECT

12

CHANGES IN HIGH-CLOUD RADIATIVE EFFECT

SW and LW cloud radiative effect become more positive with surface warming

WEIGHTED CRE CHANGE AND FEEDBACK

$$F_{CRE}(I) = \frac{\Delta C(I) \cdot P(I)}{\Delta T_{s}}$$

 $F_{CRE}(I)$ Feedback from change in CRE ΔT_s Increase in surface temperature

FAT HOLDS IN ICON

$$T_{\rm hc} = \min\left(T_{bright}, T\Big|_{\max(IWC)}\right)$$

 T_{bright} : Brightness temperature $T|_{\max(IWC)}$: Temperature at maximum ice water content

FAT HOLDS IN ICON

$$T_{\rm hc} = \min\left(T_{bright}, T\Big|_{\max(IWC)}\right)$$

 T_{bright} : Brightness temperature $T|_{\max(IWC)}$: Temperature at maximum ice water content

Mean high-cloud temperatures:

Control:	223.7 K
+2 K:	223.4 K
+4 K:	223.4 K

SHIFT IN DAILY CYCLE DECREASES SW C(I)

Decrease in SW C(I) is most pronounced for $I > 1 \text{ kg m}^{-1}$ Decrease of incoming SW radiation: Control: 430 W m⁻² +2 K: 415 W m⁻² +4 K: 406 W m⁻²

SHIFT IN DAILY CYCLE DECREASES SW C(I)

SHIFT IN DAILY CYCLE DECREASES SW C(I)

Decrease in SW C(I) is most
pronounced for $I > 1 \text{ kg m}^{-1}$ Decrease of incoming SW
radiation:Control: 430 W m^{-2} +2 K: 415 W m^{-2} +4 K:

Daily cycle of convection shifts to earlier times

THE HIGH CLOUD FEEDBACK FROM ICON IN PERSPECTIVE

- Altitude feedback from ICON at high end of uncertainty range
- Area and albedo feedback from ICON close to zero
- Positive feedback from shift in daily cycle with the same order of magnitude as altitude feedback

WHAT CAUSES WEAK STABILITY IRIS?

WHAT CAUSES WEAK STABILITY IRIS?

WHAT CAUSES WEAK STABILITY IRIS?

$$C \sim CSC = \partial_z \left(\frac{H}{\Gamma_d - \Gamma} \right) = \partial_z \left(\frac{\text{Radiative Cooling}}{\text{Stability}} \right)$$

Increase in clear sky cooling counteracts increase in stability

Also found by Bony et al. (2016), but less strong

INCREASE IN CLEAR SKY COOLING DUE TO LOWER DENSITY

- Flux divergence invariant to surface temperature (Jeevanjee and Romps, 2018)
- 2. Increase in clear sky cooling due to density reduction (Gasparini et al., 2024)

Speculation: Prescribed ozone might result in bias towards stronger stability iris due to decreased clear sky cooling