Quantifying Global Convective Cloud Radiative Effects with A-Train Observations

Tristan L'Ecuyer¹ and Juliet Pilewskie²

¹University of Wisconsin, Cooperative Institute for Meteorological Satellite Studies ²Columbia University, NASA GISS

Role of Cloud Type in Earth's Energy Budget

Do the radiative effects of convection matter?

L'Ecuyer et al, J. Climate (2019) and Hang et al, J. Climate (2019)

Flaws in Interpreting Net Effect

- Convection substantially influences both SW and LW radiation
 - The radiative effects of individual deep convective systems are much larger than any other cloud type
- SW and LW radiative effects influence the partitioning of energy between the atmosphere and ocean
- Pixel-based definitions of deep convection likely undercount clouds linked to convection (a) Warming Convective System (b) Cooling Convective System

Cloud Fraction

Some Ci and M.L. clouds are likely attributed to convection

Shortwave Effects

L'Ecuyer et al, J. Climate (2019) and Hang et al, J. Climate (2019)

Longwave Effects

A More Complete Definition: Convective Objects

Motivating Question:

How do the radiative effects of present day convection vary with intensity?

Group connecting "cloudy" pixels surrounding convective core

- Combined measurements from CloudSat and CALIPSO
- Object identification with Python's scikit-image package
- Conditions: -28 dbZ & cloud top height gradient < 1 km

Pilewskie and L'Ecuyer, J. Geophys. Res. (2022)

Global Distribution of Convective Objects

- > 95,000 COs observed in ~4 years
- Evidence of diurnal cycle limitations: more frequent convection at 1:30 pm than late at night (1:30 am); other local times not sampled by CloudSat

Observed Radiative Effects of Convective Objects

First Order Questions

- How do the areas of 'thick' and 'thin' cloud vary with intensity?
- How do the radiative effects of 'thick' and 'thin' cloud vary with intensity?

CRE is Modulated by Cloud Thickness

Sorting By Intensity: Relative Center of Gravity

Calculation:

 CoG: Average height of the convective core weighted by reflectivity (Storer et al., 2014)

$$CoG = \frac{\sum_{i} Z_{i} H_{i}}{\sum_{i} Z_{i}}$$

Z: measured reflectivity at level *i H*: height of each level *i*

 Relative CoG (rCoG) = CoG – freezing level height

Composited Single-core CO Reflectivity Profiles over tropical (30°N/S) ocean in 2010

The height of the convective core rCoG reflects how high large hydrometeors are lofted into the atmosphere

CRE Changes with Intensity (single cell)

Single-cell, Deep Convective Objects

CRE Changes with Intensity (single cell)

CRE Changes with Intensity (multi-cell)

Multi-cell COs exhibit a stronger reduced cooling as intensity increases

- SW CRE <u>decreases</u> from increased thin cloud at the expense of thick cloud
- LW CRE already resembles that of strong single-cell COs and is insensitive to intensity changes

Conclusions

- Despite diurnal sampling limitations, the A-Train (especially its active sensors) provides a unique multi-sensor perspective on the structures and radiative effects of complex convective objects.
- Active convection exerts the strongest impacts on SW and LW radiation of any cloud type, resulting in a net global cooling effect, primarily from multi-cell storms.
- Convection cools less with increasing intensity. This is particularly pronounced for multi-cell storms due to an increase in optically thin cloud area at the expense of thicker anvil.

New Dimensions (ongoing)

 time: How does the relationship between convective intensity and radiative effects vary over the convective lifecycle?

environment: How do CO intensity and radiative effects vary as a function of the environment in which it forms?

 spectral: What additional insights can be gleaned by adding a spectral dimension?

CRE Evolution over the Convective Lifecycle

Adapted from Houze (1981)

How Do MCS CREs Vary Over Their Lifecycle?

E.g. Bouniol et al., J. Climate (2016) Bouniol et al., J. Climate (2021) Jones et al., ACP (2024)

0-1: 10

4-5: 29

6-7: 17

8-9: 6

0-1

2-3

4-5

MCS Life Step

6-7

8-9

0-**2-3:** 22

Fiolleau and Roca, ITGRS (2013)

Establishing Controlling Factors

net CRE shifts toward less cooling with increasing intensity in all ω_{500} – SST states but the effect is weaker for colder SSTs and strong ascent

Change in $\text{CRE}_{\text{Net,TOA}}$ with Increasing Intensity

Adding the Spectral Dimension with PREFIRE

Courtesy: Carolyn Bean

GOES-16 ABI 11.2 μm Brightness Temperature 2025-03-12 7:45 UTC (southeast Brazil)

PREFIRE Brightness Temperature Spectra

PREFIRE

The Spectral Dimension: Typhoon Yagi

PREFIRE