Scale-dependence of tropical oceanic deep convective systems' cloud shield morphology to environmental conditions

T. Fiolleau, R.Roca, L.Netz

LEGOS/CNRS Toulouse, France thomas.fiolleau@cnrs.fr

LEGOS

What drives the convective system cloud shield morphology?

Deep convective systems

Wide range of time and spatial scale

time

- convective cells organized in space and time
- upper-level cloud shield forming a consistent object in space and time

Cloud shied morphological intensity

- Growth rate of the DCS cloud shield
- Shape (via Eccentricity)
- **Depth** (via cloud-top temperature)
- Propagation speed

Internal drivers

- Amount of deep convective cells
- Depth, mass flux,...
- Microphysical: stratiform precipitation
- Dynamics: mesoscale circulation
- Convective Organization

External drivers

- Wind shear
- Instability
- water vapor

What drives the convective system cloud shield morphology?

Deep convective systems

Wide range of time and spatial scale

- convective cells organized in space and time
- upper-level cloud shield forming a consistent object in space and time

Cloud shied morphological intensity

- Growth rate of the DCS cloud shield
- Shape (via Eccentricity)
- **Depth** (via cloud-top temperature)
- Propagation speed

Internal drivers

- Amount of deep convective cells
- Depth, mass flux,...
- Microphysical: stratiform precipitation
- Dynamics: mesoscale circulation
- Convective Organization

External drivers

- Wind shear
- Instability
- water vapor

How large-scale environmental factors statistically shape cloud shield characteristics?

time

Deep convective systems

The 2012-2020 TOOCAN dataset

Fiolleau and Roca 2024

- Cloud tracking algorithm applied to geostationary IR imagery
- ~ 700.000 Tropical Oceanic convective systems
- access to Morphological metrics

Deep convective systems

The 2012-2020 TOOCAN dataset

Fiolleau and Roca 2024

- Cloud tracking algorithm applied to geostationary IR imagery
- ~ 700.000 Tropical Oceanic convective systems
- access to Morphological metrics

Deep convective systems

The 2012-2020 TOOCAN dataset

Fiolleau and Roca 2024

- Cloud tracking algorithm applied to geostationary IR imagery
- ~ 700.000 Tropical Oceanic convective systems
- access to Morphological metrics

Deep convective systems

The 2012-2020 TOOCAN dataset

Fiolleau and Roca 2024

- Cloud tracking algorithm applied to geostationary IR imagery
- ~ 700.000 Tropical Oceanic convective systems
- access to Morphological metrics

A Phase Space diagram

Deep convective systems

The 2012-2020 TOOCAN dataset

Fiolleau and Roca 2024

- Cloud tracking algorithm applied to geostationary IR imagery
- ~ 700.000 Tropical Oceanic convective systems
- access to Morphological metrics

A Phase Space diagram

Environmental variables

3°×3° daily ERA-5 averages, centered on DCS genesis location, using same-day conditions

3 key parameters representing tropical convection ingredients:

- Wind Shear → Dynamics
- Total Column Water Vapor, CAPE → Thermodynamics

Build robust statistics of the morphology – environment relationship across time to maximum and maximum area scales

Convective systems morpholgy

Mean growth rates in the phase space diagram

- Growth rate increases with maximum area.

- For short-lived systems: Growth rate dependency on both Maximum area and time to maximum
- For the largest and long-lived systems: growth rate dependency on time smaller.

Scale-dependence behavior of growth rate

Thermodynamical environmental variables

Mean thermodynamical variables in the space phase diagram

- CAPE increases with maximum extent, but decreases with time to maximum extent.

- High values of **TCWV**, Little variability across the time and spatial scales

How well the distribution of the thermodynamical variable explains the scale-dependence of growth rate across the phase space?

CAPE and **TCWV** weak correlation with growth rate

Dynamical environmental variables

Mean dynamical variables in the space phase diagram

Sensitivity of the deepest wind shear layers to both the time to maximum and the maximum area
Weaker gradient as the layer is confined to the lower atmospheric levels.

How well the distribution of the dynamical variable explains the scale-dependence of growth rate across the phase space?

Strong linear correlation with shear in both the deepest and the lowest layers

Extension to other cloud morphological properties

2	Morphological properties	САРЕ	TCWV	Shear 400 hPa	Shear 900 hPa
	90th BT	0.06	0.53	0.65	0.34
	Eccentricity	0.22	0.23	0.00	0.06
	Speed	0.07	0.13	0.33	0.22

- Moderate r² of 90th BT with shear at 400 hPa and TCWV.

- Weak influence of environmental variables on eccentricity and propagation speed.

Relative contribution of each environmental variable

What is the relative contribution of each environmental variable in explaining the variability of morphological characteristics across the phase space?

A multiple linear regression approach:

Lag=0 day	2 predictors	3 predictors	4 predictors
Growth rate	0.85	0.85	0.86
90th BT	0.80	0.80	0.83
Eccentricity	0.62	0.64	0.64
Speed	0.33	0.34	0.34

Growth rate: strong r² attributed primarily to Deep shear, secondary to low shear

Depth (90th BT) : strong r² with Deep shear and TCWV main contributors

Eccentricity and Speed less direct relationship to environment

Conclusion

Relationship of the Scale dependence of cloud shield morphological properties with thermodynamic and dynamic environment

- satellite-based dataset of convective systems
- ERA-5 data
- Growth rate is best explained by deep-layer wind shear, not by CAPE or TCWV
- **Depth** correlates with dynamics and only secondarily with water vapor.
- Eccentricity and speed show low sensitivity to environmental conditions.

Dynamical drivers exert stronger morphological control than the thermodynamic factors

JGR Atmospheres

RESEARCH ARTICLE 10.1029/2024JD042494

Key Points:

- Observational data set reveals robust scale dependence between deep convective cloud shield morphology and initial environmental conditions
- Scale dependence of the system's shield growth rate is strongly related to the wind shear over a deep tropospheric

Scale-Dependence of Tropical Oceanic Deep Convective Systems' Cloud Shield Morphology to Environmental Conditions

Rémy Roca¹, Thomas Fiolleau¹, and Louis Netz¹

¹Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (CNRS/CNES/IRD/UPS), Université de Toulouse, Toulouse, France