Diabatic heating of mesoscale convective cloud systems from
synergistic satellite data

CHEN Xiaoting
Claudia Stubenrauch, Giulio Mandorh

Laboratoire de Météorologie Dynamique / IPSL, Paris, France

Contact: xiaoting.chen@Imd.ipsl.fr

. SORBONNE
UNIVERSITE

GCCA

Y/p,

Paris, France | 19-21 May 2025


mailto:xiaoting.chen@lmd.ipsl.fr

Motivation and Strategy

4+ Latent heat release and its fluctuations are central to the interactions within Earth's water and energy
cycles, with radiative heating (RH) of upper-tropospheric (UT) clouds further enhancing this energy
reservoir by at least 20% /L1 et al. JGR, 2013, Stubenrauch et al. ACE 2021].

4 What is the relationship between latent heating (LH) and radiative heating in mesoscale convective
systems (MCS) ?
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Strategy

Complete picture -> multiple datasets

However, sophisticated measurements constrained by limited sampling density:

o0 Constructing a more complete dataset by Artificial Neural Network (ANN) techniques.
« 3D Snapshots at 4 specific observation times

o Process-oriented analyses



3D snapshot reconstruction using synergistic data & Machine Learning

IR sounder: horizontal structure

CIRS (Clouds from IR Sounders) :
only cloud height & emissivity

Vertical structure, radiative heating
rate & precipitation:

CloudSat-CALIPSO only on narrow nadir
tracks

(Stubenrauch et al. 2021)

L Expanded radiative heating rates are now available: https://gewex-utcc-proes.aeris-data/fr y
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https://gewex-utcc-proes.aeris-data/fr

Relationship: rain intensity-cloud properties

Rain rate intensity is largest for opaque, thickest and highest clouds!

AIRS 1h30 no rain 0.30 -
17 5 1 —— AIRS 1h30 light rain 6 - heavy rain 9%
= AIRS 1h30 heavy rain
1 AIRS 13h30 no rain 0.25 A
15.09 . AIRS 13130 light rain 5 7
=+ AIRS 13h30 heavy rain
12.5 - 0.20 -
4 -
P
= 10.0 -
5 3 - 0.15 -
S
7.5
2 0.10 -
5.0 -
2.5 - 1 - \ 0.05 -
0.0 A —— 0 - - 0.00 A
0.2 0.4 0.0 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 4 §) 8 10 12 14 16 18
EPS(emissivity) Normalised vertical extent Ztop

Rain rate classification from AIRS ML-CloudSat for scene identification: no rain, light rain, heavy rain
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Evaluation of ANN radiative and latent heating
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Coherence between TRMM-SLLH and ANN predicted I.LH

Vertically integrated LH over all scenes

ocean

| =— LP from TRMM
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| —— LP13:30 Over ocean, the zonal averages of LH at 1:30

AM&PM agree well with TRMM-SLH complete

diurnal sampling.

Over land, we miss strong convection of Ilate

afternoon.
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Coherence between TRMM-SLLH and ANN predicted I.LH

Vertically integrated LH over all scenes

ocean
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LP 13:30 Over ocean, the zonal averages of LH at 1:30
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Coherence between TRMM-SLLH and ANN predicted I.LH

Vertically integrated LH over all scenes
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LH profiles of rainy scenes
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Over ocean, the zonal averages of LH at 1:30

AM&PM agree well with TRMM-SLH complete

diurnal sampling.

While the sampling at 9:30 shightly underestimates LLH

Shapes of ocean/land profiles are different, as

expected with a larger contribution of low level clouds

OVETI OcCcarnl.

Diurnal cycle as expected:
Over ocean: maximum convection over early morning

Over land: maximum convection 1n the evening
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Coherence between TRMM-SLLH and ANN predicted I.LH
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“* The TRMM’s revisit cycle strongly varies across regions, with 23 days at the equator and up to 46 days at the highest latitudes

(Negri et al., 2002).

“* From 1° to 10° averaging, slopes between TRMM-LP and ML-LP increase: 0.54 to 0.82 (10°N-10°S),
0.44 to 0.77 (20°N/S-30°N/S, not shown)

% Strong bias reduction and noise reduction when averaging over more observations. For larger grid cell sizes the agreement is much better
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Reconstruction ot 3D diabatic heating fields: 2004-2013

Contrasting La Nifnia and El Nino events

Atmospheric Cloud Radiative Effect (ACRE): the difference 1n cloud radiative eftects between the TOA and the surtace

ACRE =] HR dp — | HRclr dp

El Nino (Jan 2016)
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Different environments characterized by sea surface temperature (SST) and column water vapour (CWV):
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Relationship between LLP, ACRE and environment
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¢ Yor a given LP, ACRE 1is generally largest in warm-humid and

smallest in cool-dry conditions.

“ SST plays a larger role in dry environments.

@ Humidity plays a larger role in cool environments.

@ Larger ACRE s linked to higher cloud height (lower cloud top

pressure).
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Reconstruction of mesoscale convective systems (MCGS)

UT cloud systems built from adjacent grid cells with similar Peq

1 Jul 2007 AM

(Protopapadaki et al., ACP, 2017)
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< Heawily raining MCGS produce largest LH

MCS reconstruction using CIRS Pgq and e€aq
(Stubenrauch et al. 2023)

Collocation with ML diabatic heating(only orbits)

Cooling above MCS core increases with opacity

A proxy of deep convection

< Deep convection can also be distinguished by large MUS size or large cooling above MUS cores




Result]: ACRE modulation by MCUS size

Proxy for life stage:

Convective core fraction within the MCS:

orven by the ratio of convective core size over MCS size

- Developping CI' 0.6-0.9
Mature: CI 0.4-0.6

- Dissipating: CIF 0.2-0.4

“* Both LLP and ACRE increase with MCS size, the increase flattens for larger M CS size.

(\I

S
=
0
—J

1600

1400-

1200-

1000-

600

A
- k )
L

Lyt

-

@® developing
® mature
© dissipating

O..

500 1000 1500 2000 2500

MCS size (100km?)

ACRE (W/m?)

110-

100-

90- ‘+
{:f .

80 — + Q

704"

0

* For a similar MCS size, LP and ACRLEL decrease from developing towards dissipating stage
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“*These behaviors are in line with those of the fraction of precipitation area within the MCS and the minimum

temperature within the convective core, respectively.



Result]: ACRE modulation by MCUS size

Proxy for convective organisation:

MOCS size at the same rain intensity (LLP)

Proxy for mature MCS:
Core Fraction: 0.4-0.6
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More organized M(CSs show larger vertical heating gradients at similar rain intensity.

¢ Convective organisation enhances ACGRE by about 10 Wm- for larger, more organised M(GSs than for smaller,

*'I'his additional ACRE and vertical heating gradients support stronger, sustained convection and impact large-




Result2: MCS properties as tunction of LLP and ACRE
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o Masunaga and Takahashi (2024, GRL, under review): the M(CSs converge during their evolution to a settling point with

L.P of about

* Our MCS and life stage 1dentifications are different, but a similar converging area can still be c!

> MCSs wit]

700 Wm-2 and ACRE of about 75 Wm-2.

h a larger core fraction and emissivity, smaller size occupy the LP-ACRE space at t

» MCS 1n the later life stage (smaller core fraction and emissivity, larger size) occupy the LP-ACRE space closer to the

settling point.
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Result2: MCS properties as tunction of LLP and ACRE

(a) Developing
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A broad scattering 1s 1n the LP-ACRE space of MUSs 1n the developing stage and a narrower distribution ot MUSs

1s 1n the dissipating stage.




Summary and Outlook
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We reconstructed longterm datasets of 3D radiative and latent heating at 4 observation times using ANN

(2004-2018).
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%

While the mean and variability of radiative heating rates are well predicted,
the mean of predicted latent heating rates agree well with observations but show smaller variability.

¢ . . . . . . . . . °
* Nevertheless, this expansion allows us to study horizontal fields of diabatic heating, in particular within MCSs.
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Convective organisation enhances AGRE by about 10 Wm-2; more organized MCUSs show larger vertical

heating gradients, supporting stronger and sustained convection.

o

* M(CSs converge toward a mean LP-ACRE over their life cycle.

Future Plans:

% Future studies should incorporate the time dimension (convection tracking).

< The distribution of MCGS properties in the LP-ACRE plane could be used to investigate GCGRM and
GCM simulations.
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Radiative heating rates are now available:

hitps://gewex-utcc-proes.aeris-data/fr
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