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Impacts of global warming on the cryosphere is acting on different scales
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Water resources of Central Asia
Vital roles of mountains, snow and glaciers
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Climate change impact on cryosphere and
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Floods, flash floods Slope instability Downstream water shortages
and inundations and slides and diminished water quality
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The changes in
the mountains
carry risks
all the way

to the
lowlands.
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Why in Central Asia”?
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Fig. 4.7 Worldwide mass balance measurements
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Mass Balance series in CA

Glacier mass balance monitoring stopped in the late 90’s (except for Tuyuksu glacier),
and through several international and national inititatives it is gradually being

resumed. only 2 continous series today continued
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General approach in Mass Balance

- restricted spatial resolution

glaciological Method | geodetic Method
+ good temporal resolution + good Spat|a|
resolution

restricted temporal

resolution

T

Z

snowline observations

+ good temporal resolution
+ applicable on extended, remote areas
- simulation (not purely observation based)

mass balance modelling validated / calibrated with transient




glacier mass balance observation
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3. modelling mass balance
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Mass Balance glacier network in CA
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Regional MB estimates through remote sensing
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Cumulative mass balance =~ @

Cumulative mass balance
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Modelled glacier mass balance
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Overall negative trend of mass
balance (with some exceptions)

Glacier monitoring network
represents relatively well the
respective region

Increase in glacier mass balance
heterogeneity —continuous
monitoring essential!

Barandun et al 2021



Glacier share in runoff
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Runoff in CA is heavily impacted by the glacier meltwater in dry summer months




Glacier share in runoff

Catchment: Naryn
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Many ground-based stations measuring snow were
abandoned after the breakup of the Soviet Un
the early 1990s, and a new observational netv
only slowly evolving in the region.
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High altitude snow processes are likely to play
large role in annual water balances, however |
altitude measurements are extremely rare in t
region.
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CHIRPS mean annual precipitation totals
(2001-2018) as a proxy for expected snow
accumulation is shown for mean March
snowcovered regions. The mean March
(2001-2018) snowcover extent derived from
MODIS platform (Aqua/Terra).show winter
P only

Fig is not included in text.

J. Fiddes
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Snhow

There are just a few studies available on long-term
trends and shorter-term variability of the snow
cover in Central Asia:

42°N

41.8°N

A decrease of mean annual snow depth for the time
period from 1940 to 1991 Aizen et al 1997).

A decrease in snow cover duration by 9 days for the ...
same time period (Aizen et al 1997).

Latitude

Slightly negative trends since 1930’s for NW Tien
Shan (Glazirin 2006).

Remote sensing products have become an
important source of data, especially in remote areas
( e.g. MODIS and AVHRR).

Peters et al. (2015) indicated for the Tarim basin a
snow cover reduction in lower elevations (< 3600 m
a.s.l.) and found also evidences for a rise in snow
cover duration at higher elevations (> 5000 m a.s.l.).

»
41.6°N

Mean march snow height (Area mean =0.92m)

E B
76.5°E TE T1.5°E 78°E

Longitude

March snow height (m) 2017-
2019 computed from
Sentinel-1 radar data at 1km
scale (source data: Lieven et
al. 2019) for Naryn
catchment.

J. Fiddes
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Permafrost is defined by ground temperatures, which are continuously below 0°C over
a period of at least one year.

CA and the Tibetan Plateau host the largest permafrost area outside the polar regions.
It covers around 3.5x10° km?2, which corresponds to about 15% of the total areal
extent of permafrost in the Northern Hemisphere.

In high mountain regions, recent increases in air temperature cause rockfalls,
landslides, debris flows and increased creep rates in rock glaciers (Bolch and
Gorbunov, 2014; Delaloye et al., 2010; Sorg et al., 2015), as well as increased runoff
from permafrost zones with high ground ice contents (Bolch and Marchenko, 2006;
Mateo and Daniels, 2018).

Climate-induced changes in permafrost can lead to strong feedbacks to the climate
system.
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Few surface
temperature
measurements
indicate
continuous
warming

Ground Temperature °f
| |

Abramov old dataset (1967 - 1999)
- Abramov new dataset (2011 - 2020)

1970 1980 1990 2000 2010 2020

Observed ground temperature measurement
at the Abramov site, Koksu valley, South
Kyrgyzstan. Clear trends are visible at the old
and new observation sites. (Data source:
Pertziger 1996 and Abramov Meteorological
Station)




Future challenges

* Glacier melt is accelerating, as well as heterogeneity in mass balance patterns is increasing
* Itis expected that seasonal runoff peak will shift towards the beginning of summer. Depending on the

scenario, in Aral basin peak water will be reached in the timeframe from 2030 + 2 (RCP2.6) until 2044 +
15 (RCP8.5). However, on the scale of individual catchments there is high variability.

* Inthe second half of the 215t century the role of permafrost in runoff will increase.

* Permafrost degradation will increase the likelihood of mountain hazards, therefore it is essential to
establish a comprehensive monitoring network

* Water reservoirs will become one of the main mitigation measures for the changing runoff pattern,
though country cooperation is essential for this to work



Ways forward

* Ensuring sustainability of the established glacier monitoring network in the
future

e Application of the Cryospheric baseline data in the fields of WRM and DRR
e Capacity building and twinning programs have to be continued

* Cryospheric sciences strengthened in the University curriculum

* (Re-) Establishing of the permafrost monitoring network

* Integration of new technologies in snow monitoring




Conclusions

* Glacier observation data should be freely accessible and provided, via the corresponding data centres
according to international standards and strategies.

* In-situ Monitoring is still very important and can be performed on several levels of sophistication.

* High-quality cryosphere data is an indispensable prerequisite to any sound water and hazard related
studies in high mountains. They have to be ensured and internationally shared in the regional and
world wide data centers

* Regional cooperation on WRM and DRM and awareness has to be increased based on the national
efforts

* Education and capacity building by introducing up to date student courses on BSc and MSc level, by
summer schools and by specialized field training
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