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Global observations set
the scene
What is happening?



Climatologically, the “tropics” (30 N to 30 S) are
close to Radiative Convective Equilibrium (RCE).

Averaged radiative cooling - CERES 2001/2009 Precipitation - GPCP 2001/2009
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A histogram of the climatological radiative cooling
and precipitation in the tropics shows that this is
not true locally!
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't is clear that the tropical RCE is only established
by the “cooperation” of very difterent regions Iin
the tropics.

Regions of the Mean histogram

1 = Strong cooling, no rain

2 = Weak cooling, no rain

3 = Strong cooling, medium rain

4 = Weak cooling, medium rain

5 = Strong rain, never cools strongly
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It Is the circulation that facilitates the large-scale
equilibrium

a) Net balance - 2001-2009
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We define a “distance from RCE” as the difference between
radiative cooling, sensible heat flux, and precipitation and ask
what fractions of days are in RCE (-50 to + 50 W/m2 difference)
as a function of spatial and temporal averaging scale.
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In relating RCE to cloud states, we find that

achieving RC

= requires the “right” mix of deep and

organised convection and suppressed conditions.

average amount of regimes in 20x20 box (%)
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The ratio of active to suppressed
conditions appears to be quite scale-
invariant.

West Pacific (0 S, 185 E)

Snapshots
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Local observations
provide process detalls
How might it work?



Radar observations from Darwin show that area-
average raintall in a convecting environment
relates strongly to the area that is raining
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Splitting the area fraction into number of
clouds and their size reveals interesting
behaviour

Area mean rainfall Local rain intensity

80 4.0 =~ 80
-

70 A 35 E 70 - o)
£

60 - 3.0 ¢ 60 A
s

50 - 25 £ 50 -
©

= 40 - 2.0 € = 40 \=

(© | N
b -

30 - - 15 ¢ 30 - }- -

-0 10 @ 20 A .\‘
>
C L

10 0.5 3 10 - =
> = =

0 + T T T T T 0.0 <L 0 T T T T T

0 100 200 300 400 500 600 0 100 200 300 400 500 600

A (km?) A (km?)

N
o

=
0o

T

=
(o))

=
AN

=
N
Convective rain intensitv (mm h=1)

=
o

(00)

(o)}



Investigating the relationship of the convective
cloud ensembles characteristics to the large
scales sets the scene for parametrisation

Mid-tropospheric RH Mid-tropospheric vertical motion
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RH at 500 hPa (%)

Investigating the re
cloud ensembles ¢
scales sets the sce

Cloud area fraction as f(RH, w)
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Translating what we’ve
learned iInto models



Based on our findings we divide the mass-tlux that
models use to describe convection Into area and

velocity and predict area with a statistical model

pw's"~M (s, =)

States considered:

® C(lear

® Congestus

® Deep Convection
® Stratiform Clouds

MC ~ pGCWC
1 1
ROIZ—F(C)P(D)a ROZI—F(C)(l_P(D))a
701 702
Clear to congestus Clear to deep

So large C (ascent) and large D (low RH) favour
congestus, while large C and small D (high RH)
favour deep convection.



The model captures the the
observed behaviour well

Observations Kwajalein
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The new framework can i principle deal with all 1ssues
currently being discussed 1n the parametrisation community

+ Stochastic behaviour of convection
+ Co-existence of different types of convection

GCMgrid + Organisation (cold pools, coast lines, other)
+ Resolution-awareness and dynamic switching off
O(100 km) of convection
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The vertical cloud structure will be calculated separately for
cach cloud type using an entraining plume or any other cloud

model
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