Multi-scale flows in the presence of various shallow cloud organization patterns
Multi-scale flows in the presence of various shallow cloud organization patterns
(Where) do shallow clouds decelerate or accelerate the wind?

1. Analysis of the momentum budget using EUREC4A observations
2. The near-surface wind vector balance
3. Wind balance throughout the lower troposphere (in observations and IFS forecast)
(Where) do shallow clouds decelerate or accelerate the wind?

1. Analysis of the momentum budget using EUREC4A observations
2. The near-surface wind vector balance
3. Wind balance throughout the lower troposphere (in observations and IFS forecast)

Stronger trade-winds - in response to stronger pressure gradients - drive deeper, larger clouds, which may reduce cross-isobaric wind turning and large-scale wind convergence in the ITCZ
Central to EUREC4A were circular sounding arrays that allow us to revive early budget studies.

Holland & Rasmusson (1973): Ship array during BOMEX “where the air meets the ocean”

The residual in the momentum budget is interpreted as eddy momentum flux divergence (a friction)

* JOANNE: circular dropsonde arrays (85 circles, 13 flight days): meso-scale divergence, pressure gradients and winds are used to construct the momentum budget

* In-situ turbulence measurements:
 - profiles: the French ATR Safire aircraft legs within the circle
 - profiles: the Unmanned Airborne Vehicle CU RAAVEN
 - near-surface: the NOAA Saildrone in the trade-wind alley

* Flights sample mesoscale variability in divergence
Near the surface, what is the wind vector balance?

Near the surface, what is the wind vector balance? (Nuijens et al. 2022, in review)

\[\begin{align*}
\text{Textbook cross-isobaric flow} \\
\frac{1}{\rho} \frac{\partial}{\partial p} \left(\rho \frac{\partial F_s}{\partial p} \right) - f u_s + p_+ = p_-
\end{align*}\]
Near the surface, what is the wind vector balance?

Textbook cross-isobaric flow:

\[
-fu_s \quad \frac{1}{\rho} \frac{\partial}{\partial p} \frac{\partial u_s}{\partial p}
\]

EUREC4A mean:

\[
F_s \quad p_+ \quad -\rho^{-\frac{3}{2}} \nabla p
\]

Nuijens et al (2022, in review)
Near the surface, what is the wind vector balance?

Wind veering with height, vertical transport introduces momentum with positive v-component.

Wind veering is small (2.7° up to cloud base), vertical transport efficient!

Textbook cross-isobaric flow

$$\frac{1}{\rho} \frac{\partial}{\partial p}$$

EUREC4A mean: cross-isobaric flow

$$\nabla \cdot \mathbf{u}$$

A component of friction that veers the wind - opposing cross-isobaric wind turning - is most pronounced during a period of stronger trade-winds and convection.

Nuijens et al (2022, in review)
Convective, mesoscale flows create a deeper layer of easterly flow

layer with acceleration of easterly flow

frictional layer

Nuijens et al. (2022, in review)
Convective, mesoscale flows create a deeper layer of easterly flow

See Poster Alessandro Savazzi:
CO63 – Convective Momentum Transport in Organised Shallow Cumulus Fields
Differences in wind tendencies linked to weak zonal wind bias in IFS

no convective tendency above 1.5 km

compensating physics/dynamics errors

Savazzi, Nuijens, Sandu, George and Bechtold (in review)
Trade winds convection accelerates flow near surface and cloud tops: Frictional layer is ~ 1.5 km deep, convection contributes to friction in the upper mixed-layer and lower cloud layer. Weak wind turning!

Highlights and implications

- **Trade winds convection accelerates flow near surface and cloud tops:** Frictional layer is \(\sim 1.5 \text{ km} \) deep, convection contributes to friction in the upper mixed-layer and lower cloud layer. Weak wind turning!

- **A brake on the circulation?** Convection plays a role in veering the wind, opposing friction-induced cross-isobaric flow (Ekman pumping), which may impact the structure of the ITCZ

> **EUREC4A Large Eddy Simulations show an increase in the role of physics to veer the wind as winds strengthen**
Highlights and implications

✦ **Acceleration near surface and cloud tops:** Frictional layer is about 1.5 km deep, convection contributes to that friction in the upper mixed-layer and lower cloud layer.

✦ **A brake on the circulation?** Convection plays a role in veering the wind, opposing friction-induced cross-isobaric flow (Ekman pumping), which may impact the structure of the ITCZ.

✦ **Break-out group discussion tomorrow:** Shallow convective momentum transport, impact on the large-scale circulation and persistent wind biases in GCMs.