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the atmosphere and ocean from above

• SST variability can affect cloudiness 

• fluxes tell the atmosphere about SST 

• flux parameterizations can be biased
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small/fast

large/slow

MJO-ENSO coupling
adapted from Brown et al. (2015)

source: UCAR



SST effects during EUREC4A/ATOMIC

Xuanyu Chen (NOAA/CIRES)
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• analyzed SST, 
winds from RHB, 
wave gliders


• SST, wind vary 
coherently on 14- 
and 28-km scales
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bulk surface flux effects for weather & climate simulation

• MJO amplitude biases -> jet stream biases

animations adapted from Henderson et al. 2017

RWS

• MJO propagation biases -> jet stream biases

• MJO propagation biases -> ocean Kelvin wave, ENSO biases

Example:  MJO-ENSO interactions
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bulk inputsparameterization

surface fluxes: measurement versus estimation

direct covariance measurement

LH = Lew′ q′ 

w′ 

q′ 

infrared fast hygrometer

Weller et al. 2008

bulk estimation

LH = LvCe |V | (q*SST − q2m)

Fairall et al. 2003

COARE3.0 algorithm
direct measurement



surface flux biases among bulk algorithms
• climate and forecast models compute surface fluxes using a variety of bulk 

surface flux algorithms


• most algorithms overestimate surface fluxes

bias (W m-2)

U < 4 m s-1 4 < U < 10 m s-1 U > 10 m s-1

10-20% biases 
on average

Brunke et al. (2003)

COARE algorithm is 
among the “least 

problematic”



surface fluxes: how to diagnose their biases in models?

LH = LvCe |V | (q*SST − q2m)

LH = LvCe |V |Δq
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surface fluxes: how to diagnose their biases in models?

NOAA
McPhaden (2008)

• the “flux matrix” diagnostic illustrates where model fluxes are most biased as a 
function of wind speed and humidity disequilibrium.
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how to assess bulk algorithm impacts

• “offline” correction

• use flux matrix to generate a “corrected” flux time series

• no feedbacks to ocean or atmosphere


• “inline correction

• replace a model’s default flux algorithm with the COARE flux algorithm
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flux corrections for the MJO

MJO rainfall (contour) and 
surface latent heat flux (shading) 

offline correction:  default flux 
algorithm is overly supportive 
of MJO convection; too weakly 
supportive of MJO propagation

Hsu et al. 2022

Chia-Wei Hsu (NOAA/PSL)

inline correction:  COARE 
fluxes improve MJO eastward 
propagation
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bulk surface flux effects for weather & climate simulation
Example:  the ITCZ

schematic interpretation of Bischoff and Schneider (2014, 2016)

• ITCZ position set by 

• AET (Atmospheric Energy Transport) 

zonal mean across Equator

• AEI (Atmospheric Energy Input) 

meridional structure

•  


• the residual of net shortwave heating, 
net longwave cooling, and ocean 
heat uptake (OHU)


• OHU depends in part on surface fluxes

AEI = ⟨SW⟩ + ⟨LW⟩ − OHC

How might biases rooted in 
surface flux algorithms 

contribute to model ITCZ biases?



bulk surface flux effects for weather & climate simulation
Example:  the ITCZ

DeMott et al. (2022; in prep)

• “offline” assessment indicates that surface flux algorithm biases may contribute to 
the double ITCZ bias in climate models


• what about “inline” surface flux corrections?



bulk surface flux effects for weather & climate simulation
Example:  the ITCZ

• “inline” correction in atmosphere-only simulations of two models reduce the 
double ITCZ bias

E3SM 
CESM2

DeMott et al. (2022; in prep)



shading = bias Golaz et al. 2019

E3SMv1 coupled simulations
Example:  the ITCZ
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E3SMv1 coupled simulations
Example:  the ITCZ



E3SMv1 coupled simulations
Example:  shallow clouds



summary

• ocean processes modulate SST


• surface fluxes communicate SST to the atmosphere


• bulk flux algorithms in most climate models overestimate surface fluxes


• surface flux biases are not uniform across convective lifecycles

• erroneous ocean feedbacks to convective development, teleconnections


• offline and inline corrections to bulk fluxes indicate

• improved MJO

• reduced double ITCZ bias

• more analysis is needed!
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• how does the inline correction affect ECS?

ongoing work

MJO-ENSO coupling
adapted from Brown et al. (2015)

Knutti et al. (2017)

ECS
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surface fluxes: what can affect their parameterization?

• absolute or relative wind speed 

• wind gustiness

• stability of the boundary layer 

• surface roughness

• surface salinity

“many aspects of the algorithms are empirical,  
relying on constants and functional forms  

estimated from (a relatively small number of)  
ship- and buoy-based observational campaigns”


—Reeves Eyre et al. (2021)



pathways for future progress

• Needs:

• Improving CONUS precipitation forecasts on S2S+ timescales relies (in 

part) on improving the representation of tropical O-A coupling

• Coupled forecast models need to be initialized with atmospheric and 

oceanic states that are well-constrained by observations

• An increasing recognition that the OML and AML must be thought of and 

observed as a single entity:  the Air Sea Transition Zone (ASTZ).


• Needed observations

• Important, but hard-to-observe ASTZ processes require targeted field 

programs.

• Improving understanding and model representation of coupled cross-

scale interactions requires sustained, detailed measurements of the 
ASTZ at multiple locations.


