International Workshop of First Phase of GEWEX/GASS ILSTSS2S Initiative and TPEMIP (Washington D.C., USA, 8–9 December 2018)

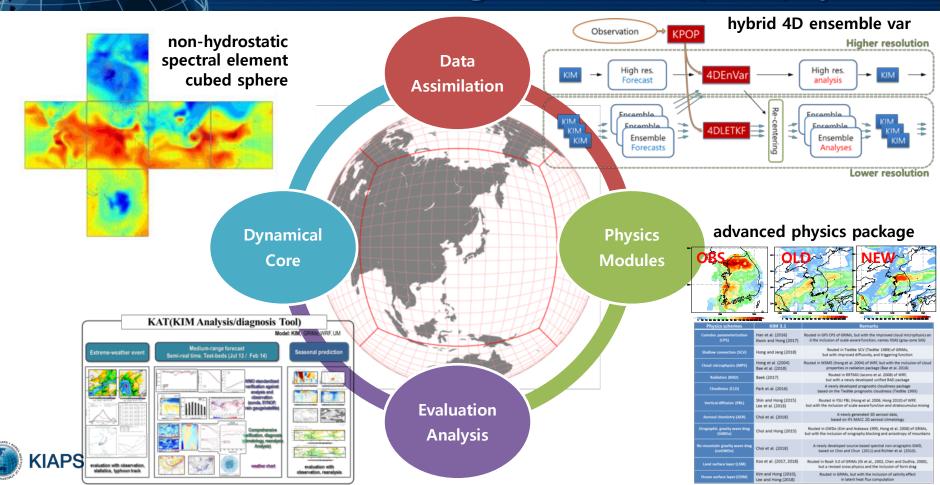
Impact of Land Surface Temperature Anomaly in KIAPS developing model

Myung-Seo Koo

Korea Institute of Atmospheric Prediction Systems, Seoul, South Korea

Acknowledgement: Yongkang Xue and Ismaila Diallo (UCLA) Hyun-Joo Choi, Kyung-Hee Seol, and Song-You Hong (KIAPS)

www.kiaps.org


Organization of KIAPS

Purpose : Developing a next generation global operational model for KMA □ Project period : 2011~2019 (total 9 years) □ Total Budget: \$95 million 2018 budget -\$10 million Public institution sponsored by government • organization: 2 divisions, 6 teams, 2 office • Man power: 58/58 + 11 + 1

	Total	Director	Research Staff				Administrative staff			
			Principal Researcher	Senior Researcher	Researche r	Assistant	Principal Staff	Senior staff	Staff	Assistant
	58+12	1	13 +1	25	11	5	1	2	3	6

Korean Integrated Model (KIM) system

Development strategy: reference model

Global/Regional Integrated Model system (GRIMs; Hong et al. 2013)

non-hydrostatic spectral element Runge-Kutta3 cubed sphere grid

6th order diffusion

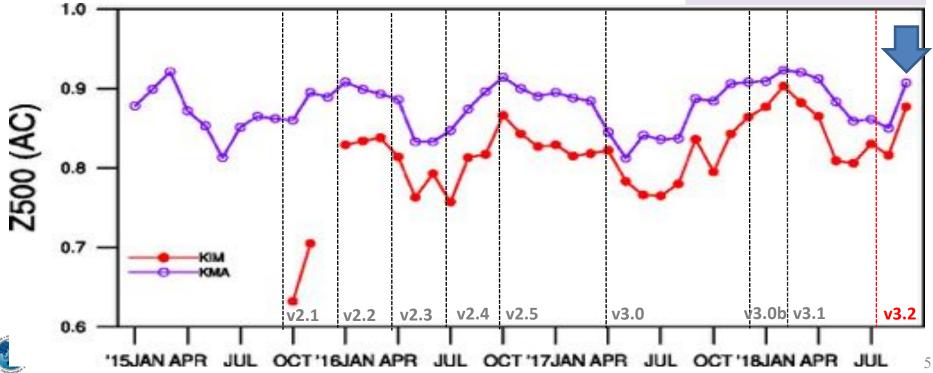
KIM

<u>GRIMs</u>

Physics
packagehydrostaticSpherical harmonics
semi-implicitGaussian lat-lon grid
8th order diffusion

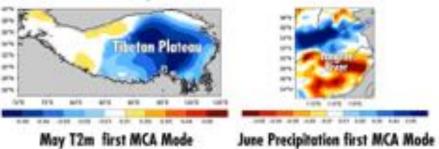
<u>WRF</u> regional seasonal simulation by GRIMs

- cost-effective
- easy to handle pre- and post-process



KIM predictability

NH 500hPa Geopotential height Anomaly Correlation at 120-hr fcst


KIM vs. KMA-UM

September 2018 96.7%(=0.877/0.907)

Purpose of this study

In KIAPS developing model, an early experiment has been done to test the sensitivity of June precipitation to May 2-m temperature (T2m)

https://ilstss2s.geog.ucla.edu/

- Impact of T2m anomaly over the Tibetan Plateau (TP) region
 → main focus of ILSTSS2S project
- Impact of T2m bias correction over the Low plain (LO) of East China
 → local temperature bias
- Impact of the updated radiation scheme reducing systematic T2m bias
 → systematic inland temperature bias

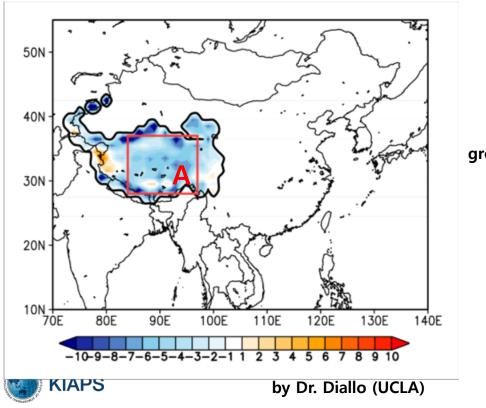
Model configuration for ILSTSS2S project

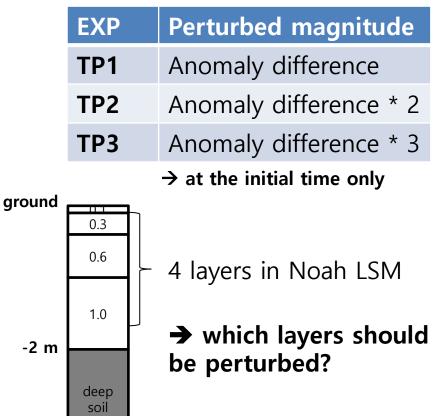
	Description					
Model version	KIM V3.2a (+ minor revision)					
Land surface model	Revised Noah LSM (Koo et al. 2017; 2018)					
Resolution	T126L42 (~1°)					
Initial data	NCEP Reanalysis II (RA2; T62L28)					
Start time	 00Z 01–05 Apr 2003 (5 members with lagged starting time) 1-month spin up 					
Surface cycling	every 24 hour					
Analysis metric - SIM: KIAPS simulation - OBS: CMA surface data	SIM Bias : SIM(2003) – OBS (2003) OBS anomaly : OBS (2003) – OBS climatology (1981–2010) SIM anomaly : SIM (2003) – OBS climatology (1981–2010)					

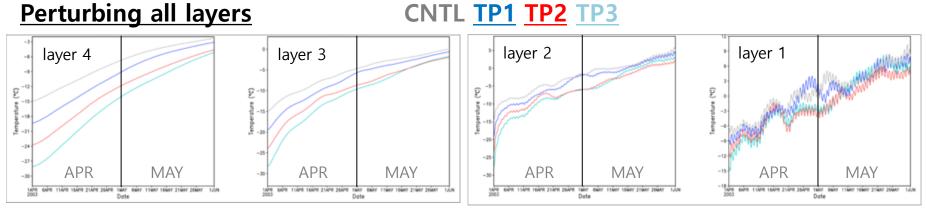
* elevation correction in 2-m temperature by -6.5 K km⁻¹

T2m (May) and precipitation (June) in 2003

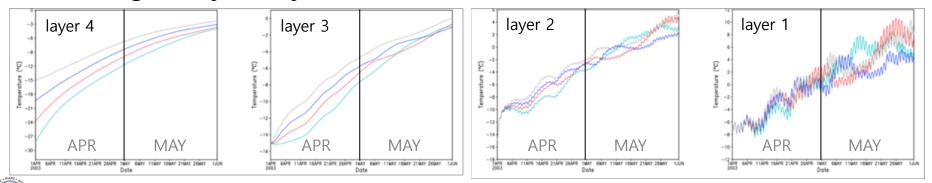
OBS anomaly **SIM** bias **SIM** anomaly 50% 40N 40% 30N 20N 20% 20N 2.43 0.3650% 50N 50N 40% EČN(50N 20% 20N .32


T2m

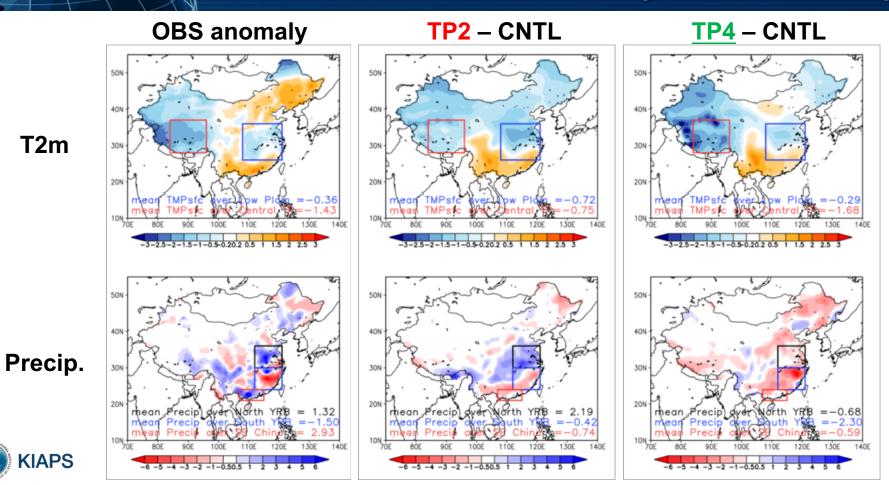

Precip.


Experimental setup for TP anomaly

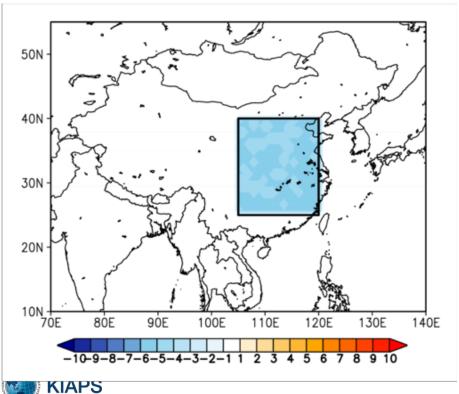
Anomaly difference in May T2m (OBS anomaly – SIM anomaly)



Time series of soil temperature (A region)


Perturbing 4th layer only

CNTL TP1 TP2 TP3


KIAPS \rightarrow could affect 1st soil layers in May with 1-month spin up.

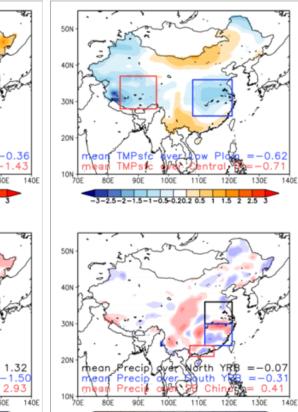
Sensitivity to TP anomaly

Experimental setup for LO anomaly

Temperature difference (LO-5 – CNTL)

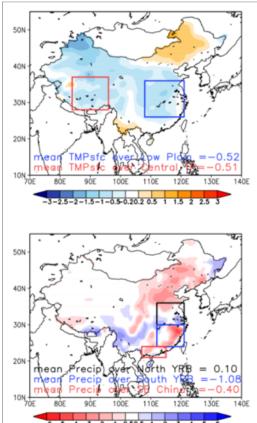
EXP	Perturbed magnitude					
LO-5	decrease by -5 K					
LO-10	decrease by -10 K					
LO-20	decrease by -20 K					
\rightarrow at the initial time only						

• To remove the local warm bias in which precipitation is of interest to us.


Sensitivity to LO anomaly

OBS anomaly

-3-2.5-2-1.5-1-0.5-0.20.2 0.5 1 1.5 2 2.5 3


130E

120E

LO-10 – CNTL

LO-20 – CNTL

T2m

50N

40N

30N

20N

10N

50N

40N

30N

20N

10N

nhear

MPs

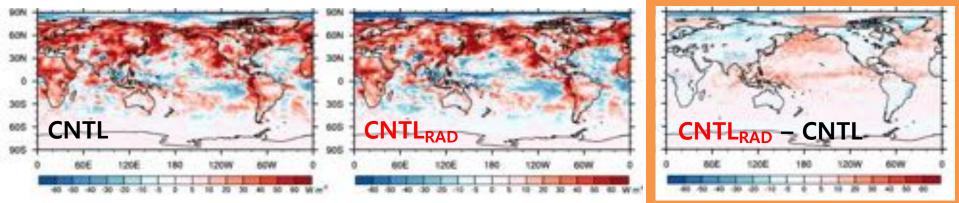
Precip.

Summarized table of sensitivity test

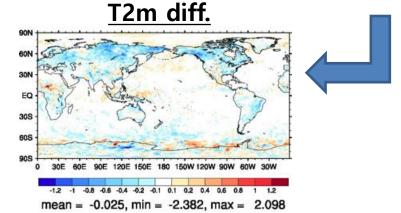
2003	May T2m		June Precipitation			
	TP	LO	N. YRB	S. YRB	SE China	
OBS anomaly	-1.43	-0.36	1.32	-1.50	2.93	
TP2 – CNTL	-0.75	-0.72	2.19	-0.42	-0.74	
<u>TP4</u> – CNTL	-1.68	-0.29	-0.68	-2.30	-0.59	
LO-10 – CNTL	-0.71	-0.62	-0.07	-0.31	0.41	
LO-20 – CNTL	-0.51	-0.52	0.10	-1.08	-0.40	

• Model can reproduce the observed relationship between May T2m and June precipitation in 2003.

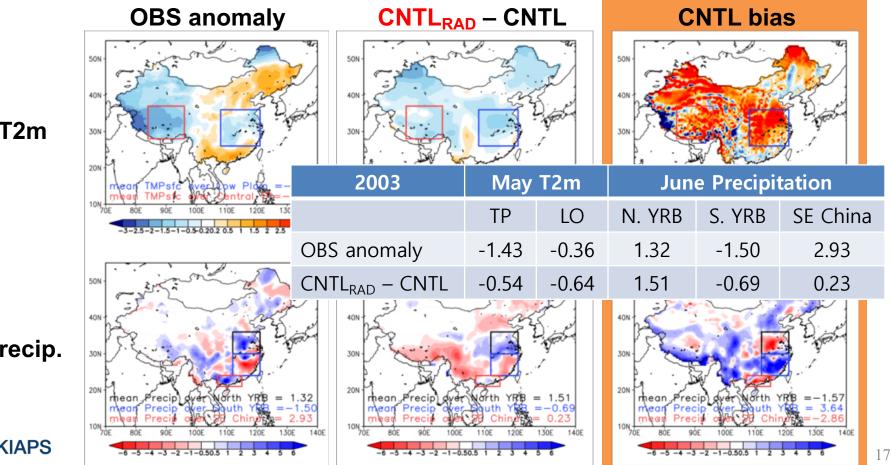
Summarized table of sensitivity test


2003	May T2m		June Precipitation			
	TP	LO	N. YRB	S. YRB	SE China	
OBS anomaly	-1.43	-0.36	1.32	-1.50	2.93	
TP2 – CNTL	-0.75	-0.72	2.19	-0.42	-0.74	
<u>TP4</u> – CNTL	-1.68	-0.29	-0.68	-2.30	-0.59	
LO-10 – CNTL	-0.71	-0.62	-0.07	-0.31	0.41	
LO-20 – CNTL	-0.51	-0.52	0.10	-1.08	-0.40	

• TP and LO regions seem to closely interact with each other in terms of T2m.


Update in radiation scheme (CNTL_{RAD})

Bias in downward shortwave flux (against the CERES in July 2017)



- Inland warm bias was attributed to the overestimation in downward shortwave flux.
- CNTL_{RAD} can reduce the warm bias biases by the reduction in downward shortwave flux.

KIAPS

Sensitivity to model update

T2m

Precip.

Summary and concluding remark

- It was found that KIAPS developing model could reproduce the observed relationship between May T2m over TP and June precipitation in East Asia.
- TP region seems to be closely interacting with LO region, which needs to be further investigated.
- Correction of systematic (radiation) temperature bias could improve the bias and anomaly of simulated precipitation, which is in line with OBS anomaly.
- Not shown here but little spin-up did not generate better sensitivity (why?)

Q) How to effectively impose temperature anomaly ?

- magnitude
- : T2m did not linearly respond to LST/SUBT anomaly magnitude.
- spin-up
- : 1-month spin-up was generally better than little spin-up.
- ensemble : simulated results were different from member to member.

