Continental air flowing over the Gulf Stream supports strong turbulent fluxes, encouraging cloud break-up through entrainment.

Cold-air outbreaks serve as dramatic visual examples of transitions from more closed- to more open-celled morphologies.

Paquita Zuidema, Rosenstiel School, U of Miami, Miami, FL
Much still unknown about cold-air-outbreak mixed-phase microphysics - and their relevance relative to the strong surface forcing

Off of the wintertime eastern US seaboard:

Wintertime cold-air outbreak clouds are typically mixed-phase, according to space-based lidar+radar (Field and Heymsfield 2015; Mulmenstadt et al., 2015)

cloud droplet numbers concentrations (N_d) indicate continental aerosol (e.g., Gryspeerdt et al., 2021)

Similar to subtropical stratocumulus:

• high N_d may extend cloud coverage
• high liquid water paths may encourage precipitation, $\rightarrow N_d$ depletion

Specific to mixed-phase:

• glaciation hastens cloud transitions (Tornow et al., 2021)
• alters cloud spatial organization (Eirund et al, 2019)
The goal:

- select cold-air-outbreak cases from the ACTIVATE* campaign spanning a range of liquid water paths, cloud droplet number concentrations

- examine the in-situ ice microphysics for dependencies

selected 5 cases in which boundary layer flow aligned with flight tracks: a framework

Seethala Chellappan\(^1\), Paquita Zuidema\(^1\), Simon Kirschler\(^2\), Christiane Voigt\(^2\), Andrew Ackerman\(^3\), Brian Cairns\(^3\), Ewan C. Crosbie\(^4\), Richard Ferrare\(^4\), John Hair\(^4\), Amy J. Scarino\(^4\), Taylor Shingler\(^4\), Michael Shook\(^4\), Luke Ziemba\(^4\), and Armin Sorooshian\(^5\)

\(^1\)Department of Atmospheric Sciences, Rosenstiel School, University of Miami, Miami, Florida, USA
\(^2\)Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
\(^3\)Goddard Institute for Space Studies, New York City, New York, USA
\(^4\)NASA Langley Research Center, Hampton, Virginia, USA
\(^5\)Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA

Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment

See also posters by Florian Tornow et al and Michael Brunke et al.
~ coincident upper-flier King Air:
 lidar (cloud top height), dropsondes, polarimeter (cloud optical depth+effective radius)

Cloud probe (FCDP+2DS) (liquid: 2-20 µm radius, drizzle (20-54 µm radius : rain: 54-732 µm radius), \(N_d \), LWC, rain rate.
Ice shape, IWC (2DS)

Strengths:
 - many many flights repeating the same strategy
 - good microphysical measurements
 - dedicated analysis effort

Caveats: no radar, no ice-nucleating-particle measurements, poor liquid water path information
5 March 2021

8 March 2021

Flight track

Blue- SST; orange - MODIS LWP
What we have learned #1:

Wintertime cold-air outbreak clouds over the western Atlantic are not ice-deprived

4 out of the 5 cases already contained ice as soon as clouds developed

This despite cloud top temperatures > -10°C, and small dropsizes

Original premise that clouds start all-liquid then transition to mixed-phase thrown out the window
\[
\overline{N_d} = 501 \text{ cm}^{-3}
\]
\[
T = -8, -9 ^\circ C
\]

Rimed ice
In-situ radius~ 5 micron
\[
\overline{N_d} = 160 \text{cm}^{-3} \quad T_{ct} \sim -10^\circ C
\]

At the first in-situ sampling, rimed ice is already present.
Ice detected on very first pass through thin cloud; cloud quickly deepened to LWP of 200 g m\(^{-2}\)

\[\overline{N_d} = 200 \text{cm}^{-3} \quad T_{ct} \sim -8 \, ^\circ\text{C} \]
5 March 2021 (afternoon)

Ice detected on first ACB pass through thinnish cloud

\[N_d = 250 \text{ cm}^{-3} \quad T_{ct} \sim -10^\circ \text{C} \]
8 March 2021 (afternoon)

- MODIS visible radiance
- 2D-Stereo images along RF51 outbound Flight leg
- RF51 outbound Flight leg
 -5°C -4.4°C -3°C -3.3°C -0.3°C 0.5°C

- MODIS visible radiance
- 2D-Stereo images along RF51 inbound Flight leg shown in RF51 inbound Flight leg

\[N_d = 200 - 300 \text{ cm}^{-3} (ACBonly) \]

\[T_{ct} \sim -5°C \]

- the one flight with no evidence of ice

(still has a nice morphological transition into largish cloud rolls)
Conditionally-sampled leg-mean IWC (IWC>0 only) shows ice production starting at T_{ct} of -5°C.
What we have learned #2:

Ice habit either dominated by vapor diffusional growth (2 flights) or riming (2 flights)

vapor diffusional growth produces higher IWCs
3 February 2021 (morning)

Temperature range correct for growth into columns
...and snowflakes in the most ice-super-saturated temperature range approaching -15°C
Ice water contents are higher when vapor diffusional growth dominates

Cloud top temp

\[\text{IWC} \]

\[\text{Nd} \]

\[\text{D}_{\text{eff}} \]
Ice water contents are higher when vapor diffusional growth dominates.
Anecdotal observations:

Transitions, cloud morphology shows little correspondence to ice habit or IWC

Remotely-sensed LWPs (RSP, MODIS) are too high (not shown) compared to profile values, surface rainfall rates not super-high

The cloud deepening can be pronounced (e.g. Naud et al 2020)

Could mesoscale circulations be playing a stronger role in the transitions than the microphysics?

pzuidema@miami.edu