

What Drives Equatorial Boundary Layer Winds?

Marius Winkler | Juan Pedro Mellado, Tobias Kölling, Bjorn Stevens

International Max Planck Research School on Earth System Modelling

Motivation Model	d Results Con. & Out.
Clim Dyn (2008) 31:587-598 DOI 10.1007/s00382-008-0364-z On the origin of equatorial Atlantic biases in coupled general circulation models Ingo Richter · Shang-Ping Xie	 "Along the equator, models fail to develop the eastern cold tongue, with SST gradients opposite to observations []."
Clim Dyn (2014) 43:2963–2984 DOI 10.1007/s00382-013-2036-x Are atmospheric biases responsible for the tropical Atlantic SST biases in the CNRM-CM5 coupled model? A. Voldoire · M. Claudon · G. Caniaux · H. Giordani · R. Roehrig	 <i>"Wind biases are thus likely a local and/or remote response to deficiencies in the atmospheric model physics."</i>
Climate Dynamics (2019) 52:5927–5946 https://doi.org/10.1007/s00382-018-4489-4	"[], further investigation on the potential feedback of zonal winds on SST is needed to completely understand the role of the coupling between the ocean and the atmosphere []."
	1/7

ICON - ICOsahedral Nonhydrostatic

- A. Non-hydrostatic model on global domains
- B. Unstructured triangular grid
- C. 5km resolution
- D. 90 levels:
 - top at 75km with 400 m
 - bottom with 25m
- E. 2-year simulation output: 01/2020 02/2022

Momentum Budget Analysis

Zonal:

Equatorial Boundary Layer Wind 4

Equatorial Atlantic

Motivation	Model	Method	Results	
------------	-------	--------	---------	--

Type 1/2: Zonal Wind Belt

Type 1/2: Zonal Wind Belt

Type 2/2: Cross Equatorial Winds

6/7

Motivation	Model	Method	Results	Conclusion

Conclusion

- A. We identify two types of equatorial boundary layer winds in ngc2009:
 - 1) Zonal Wind Belt
 - 2) Cross Equatorial Winds

Wind Type	Atlantic	Indian Ocean	Eastern Pacific
Zonal Wind Belt:	Winter	Spring, Autumn	All year
Cross-Eq. Wind:	Spring, Summer, Autumn	Summer, Winter	

B. Pressure gradient force dominates the wind balance.

Any Questions ?

Moist monsoon

Holton: "An Introduction to Dynamic Meteorology", 4e, (2004), p. 381

ICON - ICOsahedral Nonhydrostatic

- A. Non-hydrostatic model on global domains
- B. Good conservation properties (mass and energy)
- C. Unstructured grid originating from an icosahedron
- D. R02B09: 5km (square root of mean cell area)
- E. Total number of grids in R02B09: 20 971 520
- F. 90 levels: top at 75km with 400 m, bottom with 25m
- G. NextGEMS cycle 2 run:
 - → 2-year simulation output: 01/2020 02/2022

