Improving climate models using corrective machine learning

Chris Bretherton Senior Director of Climate Modeling Allen Institute for Artificial Intelligence (AI2), Seattle, WA

The AI2 Climate Modeling ML group

Chris Bretherton

Brian Henn

Code: https://github.com/ai2cm/index

Webpage: https://allenai.org/climate-modeling

Andre Perkins

Oli Watt-Mever

Lucas Harris

External

partner

Noah Brenowitz

Spencer Clark

Anna Kwa

Jeremv McGibbon

AGCM parameterizations are human-designed, column-local

- Representing subgrid variability is uncertain.
- Common inputs
 - $\circ~$ Profiles of humidity, temperature, winds
 - Sunlight, elevation, surface fluxes, land heterogeneity
- Outputs:
 - Profiles of diabatic heating, moistening rates, drag

 \rightarrow Improving 'column physics' is naturally framed as a machine learning (ML) problem being actively explored by several groups.

ML Goal: Improve coarse-model simulations

Climate model (25-200 km)

Train ML to correct parameterized column physics to make temperature and humidity of the coarse model track reference data.

High fidelity reference: observations or fine-grid (3 km) simulation

Challenge of ML coupled to other components

Fine-grid reference model: X-SHiELD

3 km grid gives a better rainfall simulation over land than 200 km:

• Enabled by explicit simulation of cumulonimbus clouds & well-resolved mountains

3 km model is expensive & imperfect but enables 1+ yr simulations in multiple climates

ML for correcting model physics: 'Nudge to fine'

Our published example:

Corrective ML Method:

- 'Nudge' coarse model state to the fine-grid reference state (3 hr timescale)
- Machine-learn the 'nudging tendencies' that do this as a function of coarse model column T, q, [u, v]

Fine-grid reference (NOAA GAEA supercomputer):

- 40-day GFDL X-SHiELD 3-km global storm resolving run (DYAMOND project)
- Petabytes of model output coarsened online each 15 min and stored to Google Cloud.

Nudged training run and ML on Google Cloud

Bretherton et al. 2022, JAMES

'Nudge to fine': ML methodology

From nudging tendencies every 3 hrs for 40 d, subset to:

Training set = 1.8M samples (130 times x 13824 grid columns) **Test set = 700K samples** (50 times x 13824 grid columns) Features air temp Predictions vertical Random forests profile (13 trees, max depth 13) heating vertical specific profile humidity A simple neural network vertical laver laver profile Neural network ensembles moistening vertical (fully connected, 3 layers, 128 additional profile neuron width) potential features, ex. Surface insolation downward

land/sea mask surface elevation

radiation

'Nudge to fine': ML offline evaluation

When evaluated out of sample but offline, the ML schemes produce a smoothed, lower-amplitude version of the noisy nudging tendencies

'Nudge to fine': Online performance

Compared to baseline, ML-corrected 40 d run has

- Better land-mean and RMSE of precipitation
- Better land diurnal cycle of precipitation
- Better land surface temperature

'Nudge to fine': Multi-climate training / testing

Train corrective ML from year-long 25 km 'fine' simulations in SST-perturbed climates to improve 200 km coarse-grid simulations in multiple climates.

Clark et al. 2022, JAMES, submitted

Land precipitation RMSE improved 15-30% across all climates

(c) Land RMSE [mm/day]

1.5 ML inputs clipped above ~10 km (a) Control climate baseline for stability 0.5 ML-corrected runs maintains (d) Land bias [mm/dav] stable climates over 5 years 0.5 (b) Control climate ML-corrected ML corrects dry bias over -0.5Amazonia and Africa. ML also reduces land-surface (e) Ocean/sea-ice RMSE [mm/day] 2.5 temperature biases. 1.5 Ocean precipitation unimproved -2 1 Precipitation bias (coarse minus fine) [mm/day] 0.5 Shows potential of corrective ML for climate change modeling. Plus 4 K Plus 8 K Minus 4 K Unperturbed ML-corrected seed 2 Baseline Clark et al. 2022, JAMES, submitted Nudged

Conclusions and outlook

- The 'nudge-to-fine' approaches improves forecast skill and land surface precipitation/temperature climatology of a coarse-grid global climate model, even across multiple climates.
- Climatological biases, appropriate inclusion of physical constraints, and out-of-sample ML behavior are persistent challenges.
- Ongoing enhancements:
 - $\circ~$ Train using new 1 year global 3 km X-SHiELD simulations
 - $\circ~$ Predict the entire physical parameterizations, not just a correction
 - $\circ~$ ML architectures that actively enable reduction of climate bias

