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● Representing subgrid variability is uncertain. 

● Common inputs

○ Profiles of humidity, temperature, winds

○ Sunlight, elevation, surface fluxes, land heterogeneity

● Outputs:

○ Profiles of diabatic heating, moistening rates, drag

→ Improving ‘column physics’ is naturally framed as 
a machine learning (ML) problem being actively 
explored by several groups. 

 

AGCM parameterizations are human-designed, column-local

Edwards, P. N. (2011)



  ML Goal: Improve coarse-model simulations

Climate model (25-200 km) High fidelity reference:
observations or 

fine-grid (3 km) simulation

Train ML to correct 
parameterized 
column physics to 
make temperature 
and humidity of the 
coarse model track
reference data. 



  Challenge of ML coupled to other components 
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  Fine-grid reference model: X-SHiELD

3 km grid gives a better rainfall simulation over land than 200 km:
● Enabled by explicit simulation of cumulonimbus clouds & well-resolved mountains

3 km model is expensive & imperfect but enables 1+ yr simulations in multiple climates

(GPCP)

Bretherton et al. 2022, JAMES



  ML for correcting model physics: ‘Nudge to fine’

Our published example:  

Fine-grid reference (NOAA GAEA supercomputer):

● 40-day GFDL X-SHiELD 3-km global storm 
resolving run (DYAMOND project)

● Petabytes of model output coarsened online 
each 15 min and stored to Google Cloud.

Nudged training run and ML on Google Cloud

Corrective ML Method:  

● ‘Nudge’ coarse model state to the 
fine-grid reference state (3 hr 
timescale)

● Machine-learn the ‘nudging 
tendencies’ that do this as a function 
of coarse model column T, q, [u, v]

Bretherton et al. 2022, JAMES



  

Random forests
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(fully connected, 3 layers, 128 

neuron width) 

insolation
land/sea mask

surface 
elevation

moistening 
vertical 
profile

From nudging tendencies every 3 hrs for 40 d, subset to:
Training set = 1.8M samples (130 times x 13824 grid columns)
Test set = 700K samples (50 times x 13824 grid columns)

‘Nudge to fine’: ML methodology
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  ‘Nudge to fine’: ML offline evaluation

When evaluated out of 

sample but offline, the ML 

schemes produce a 

smoothed, lower-amplitude 

version of the noisy nudging 

tendencies  

Target nudging tendency RF nudging tendency NN ensemble nudging tendency



  

Compared to baseline, ML-corrected 40 d run has

● Better land-mean and RMSE of precipitation

● Better land diurnal cycle of precipitation

● Better land surface temperature

‘Nudge to fine’: Online performance



  ‘Nudge to fine’: Multi-climate training / testing

Train corrective ML from year-long 25 km ‘fine’ simulations in SST-perturbed 
climates to improve 200 km coarse-grid simulations in multiple climates. 

Clark et al. 2022, JAMES, submitted



  Land precipitation RMSE improved 15-30% across all climates

● ML inputs clipped above ~10 km 
for stability

● ML-corrected runs maintains 
stable climates over 5 years

● ML corrects dry bias over 
Amazonia and Africa.

● ML also reduces land-surface 
temperature biases.

● Ocean precipitation unimproved

● Shows potential of corrective ML 
for climate change modeling.

Clark et al. 2022, JAMES, submitted



  Conclusions and outlook

● The ‘nudge-to-fine’ approaches improves forecast skill and land surface 
precipitation/temperature climatology of a coarse-grid global climate model, even 
across multiple climates.

● Climatological biases, appropriate inclusion of physical constraints, and 
out-of-sample ML behavior are persistent challenges.

● Ongoing enhancements:

○ Train using new 1 year global 3 km X-SHiELD simulations

○ Predict the entire physical parameterizations, not just a correction

○ ML architectures that actively enable reduction of climate bias


