Spring Land Temperature in Tibetan Plateau Enhances Global-Scale Summer Precipitation Prediction ---- The GEWEX/LS4P Phase I Experiment

LS4P: Impact of initialized Land Surface temperature and Snowpack on Sub-seasonal to Seasonal Prediction

3rd Pan-GASS Meeting: Understanding and Modeling Atmospheric Processes
July 25 - 29, 2022, Monterey, CA, USA
Monthly 2 m temperature difference between warm and cold Mays (°C) over Tibetan Plateau and West U.S.

Xue et al., 2021, GMD
Observed Soil Temperature Climatology (1981-2005) over Tibetan Plateau

Liu et al., 2020, JGR
Observed Spring T2m and summer precipitation relationship
MCA: Maximum Covariance Analyses
Impact of Initialized Land Surface Prediction Temperature and Snowpack on Subseasonal to Seasonal Prediction Temperature, Phase I (LS4P-I): organization and experimental design

Yongkang Xue1, Tianlong Yao2, Aaron A. Boone3, Ismaila Diallo4, Ye Liu5, Xiaolin Zeng6, William K. M. Lau5, Shiori Sugimoto7, Qi Tang1, Xiaoduo Pan7, Peter J. van Oevelen7, Daniel Kochlof8, Myung-Seo Koo9,
Tonomori Sato10, Zhao-Li Li11, Yuhei Takaya5, Constantin Aridouloz12, Stefano Materia13, Subodh K. Saha15,
Retsh Senan14, Tetsu Nakamura15, Hailan Wang16, Jing Yang17, Hongliang Zhang18, Mei Zhao19, Xin-Zhong Liang3,
J. David Neelin1, Frederic Vitart10, Xin Li2, Ping Zhao3, Chunxiang Shi2, Weidong Guo20, Jianping Tang12,
Miao Yu21, Yun Qian21, Samuel S. P. Shen21, Yang Zhang21, Kun Yang21, Ruby Leung20, Yuan Qiu21,
Danielle Peano21, Xin Qi21, Yaning Zhang21, Michael A. Brunke3, Sin Chen Chou21, Michael EK2,
Tianyi Fan18,10, Hong Gnan3, Hai Lin2, Shunlin Liang22, Heliu Wei22, Shaoyong Xie1, Haoran Xu22, Wei Peng12,
N. S. Bindusree22, Paulo Nobre22, Yan Pan23, Yi Qin23, Jeff Dozier24, Craig R. Ferguson25, Gianpalo Baban26, Qing Bao26,
Jinming Feng27, Jingyu Hong21, Songyou Hong27, Hulin Huang21, Duoying Ji21, Zheming Ji28, Shichang Kang29,30,
Yuanhuan Li27, Weigang Li12,21, Ryan Muncaster31, Patricio de Rosnay21, Hiroshi G. Takahashi12, Guiling Wang11,
Shuyu Wang31,32, Weicai Wang1, Xu Zhou21, and Yuejian Zhu21

1University of California, Los Angeles, CA 90095, USA
2Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
3CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
4University of Arizona, Tucson, USA
5Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, USA
6Japan Agency for Marine Earth Science and Technology (JAMSTEC), Yokohama, Japan
7Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
8International GEWEX Project Office, George Mason University, Fairfax, VA 22030, USA
9Max Planck Institute for Meteorology, 20146, Hamburg, DeutschlandT5
10Korea Institute of Atmospheric Prediction Systems, Seoul, South Korea
11Hokkaido University, Sapporo, Japan
12Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
13Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
14Climate Simulation and Prediction (CSP), Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy
15Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
16European Centre for Medium-range Weather Forecasts (ECMWF), Reading, UK
17National Center for Environmental Prediction (NCEP)/National Weather Service/National Oceanic and Atmospheric Administration (NOAA), College Park, USA
18Beijing Normal University, Beijing, China
19National Meteorology Center, China Meteorological Administration, Beijing, China
20Bureau of Meteorology, Melbourne, Australia
21Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
22National Meteorological Information Center, China Meteorological Administration, Beijing, China
23School of Atmospheric Sciences, Nanjing University, Nanjing, China
24Nanjing University of Information Science and Technology, Nanjing 210044, China
25Pacific Northwest National Laboratory, Richland, WA 99352, USA
26San Diego State University, San Diego, USA
27Tsinghua University, Beijing, China
28National Institute for Space Research (INPE), Cachoeira Paulista, Brazil
29National Center for Atmospheric Research (NCAR), Boulder, USA
30Systems Research Group Inc at Environment Modeling Center, NCEP/NWS/NOAA, College Park, USA
31Environment and Climate Change Canada, Dorval, Canada
32University of Maryland, College Park, USA
33National Climate Center, China Meteorological Administration, Beijing, China
34University of California, Santa Barbara, USA
35Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12203, USA
36State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
37Yonsei University, Seoul, South Korea
38Sun Yat-Sen University, Guangzhou, China
39Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, China
40University of Chinese Academy of Sciences, Beijing, 100101, China
41University of Connecticut, Storrs, USA
42Tokyo Metropolitan University, Tokyo, Japan

Published by Copernicus Publications on behalf of the European Geosciences Union.
LS4P Phase I

The LS4P Phase I focuses on the first order effects most related to TP land temperature because of the high elevation of the Tibetan Plateau (TP), its significant areal coverage, and the comprehensive field measurements there.

The TP land surface temperature (LST) and Subsurface temperature (SUBT) are used as predictors of spring/summer precipitation events.

May-June 2003 is selected as the 1st case study
Observed 2003 East Asian Flood/drought

-1.41°C
May T2m biases from ensemble mean

The ensemble mean May T2m difference after imposing a mask for initialization

12 ESM with + Bias: +1.54 °C
4 ESM with – Bias: -1.07 °C

-0.82 °C
Observed June 2003 Precipitation Anomaly

Simulated June 2003 Precipitation Anomaly due to TP LST/SUBT Effect
Observed differences between five cold and five warm Mays in the Tibetan Plateau

Tibetan Plateau Index (TPI) and Rocky Mountain Index (RMI) are defined as the averaged T2m anomaly over the region bounded by 29°N~37°N and 86°E~98°E and 32°N~45°N and 110°W~125°W, respectively.
Observed differences between five cold and five warm Mays in the Tibetan Plateau

Lag Regression Relationship between TP May T2m and June Precipitation
Ensemble mean sensible heat flux difference (W/m²) after Initialization during May 2003.
Observed TPI-RMI Wave Train due to TP May T2m anomaly
1). **When?** The LS4P Phase II will kick off late this year.

2). **Focus I:** Phase II will focus on the LST/SUBT in the Rocky Mountains region and the interactions of LST/SUBT in the Rocky Mountains and Tibetan Plateau.
Climate Assessment for 1998

Gerald D. Bell, Michael S. Halpert, Chester F. Ropelewski, Vernon E. Kousky, Arthur V. Douglas, Russell C. Schnell, and Melvyn E. Gelman

ABSTRACT

The global climate during 1998 was affected by opposite extremes of the ENSO cycle, with one of the strongest Pacific warm episodes (El Niño) in the historical record continuing during January–early May and Pacific cold episode (La Niña) conditions occurring from July–December. In both periods, regional temperature, rainfall, and atmospheric circulation patterns across the Pacific Ocean and the Americas were generally consistent with those observed during past warm and cold episodes.

The 1998 Oklahoma–Texas Drought: Mechanistic Experiments with NCEP Global and Regional Models

Sung-You Hong
Department of Atmospheric Sciences, Yonsei University, Seoul, Korea

Eugenia Kalnay
Department of Meteorology, University of Maryland, College Park, College Park, Maryland

(c) June precipitation (in mm/day) for 1998 minus Climatology

June 1998 Precipitation

mm/month
2) **Focus II: How to improve the initialization for operational purpose**

The ensemble mean **1 May T2m difference** after imposing a mask for initialization

The ensemble **mean May T2m difference** after imposing a mask for initialization

-1.1 °C
-0.84 °C
Summary

1). Observed land surface temperature anomalies can persist for several months, especially during the spring. The land temperature memory could be a substantial source of S2S precipitation predictability.

2). The current ESMs has significant bias in simulated land surface temperature over high mountain regions. The prediction skill for precipitation anomalies in spring and summer months has remained stubbornly low for years. The LS4P is a community efforts focusing on process understanding and predictability, and complements other international projects that focus on the operational S2S prediction.

3). For the first time, after introducing an innovative land temperature initialization in TP, the LS4P results show that the spring land temperature anomaly in the TP has a tele-connected impact on summer precipitation S2S predictability over a number of mid-latitude and tropical hot spots, comparable to those caused by oceanic anomalies.
4). The influence is underscored by an out-of-phase oscillation between the Tibetan Plateau and Rocky Mountain surface temperatures. The impact of TP land surface energy balance on the large-scale climate dynamics manifested as a downstream wave train linking the TP to North America.

5). The LS4P Phase II will kick off late this year. Phase II will focus on the LST/SUBT in the Rocky Mountains region and the interactions of LST/SUBT in the Rocky Mountains and Tibetan Plateau. The LS4P meeting in the Breakout Group session is a prelude for the kickoff of the LS4P Phase II. How to improve the initialization for operational purpose will also be a focus.

http://ls4p.geog.ucla.edu. Email: yxue@geog.ucla.edu