Preliminary Observational Results from the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III)

Ping Zhao et al.

Chinese Academy of Meteorological Sciences International Workshop of First Phase of GEWEX/GASS ILSTSS2S Initiative and TPEMIP Washington D.C., December 2018

Higher Influence Tibetan Plateau and Climate, Near and Far

 Zhao et al., 2018: The Third Atmospheric Scientific Experiment for Understanding the Earth-Atmosphere Coupled System over the Tibetan Plateau and Its Effects. BAMS, 99, 757-776, DOI: 10.1175/ BAMS-D-16-0050.1.

Outline

1. Background of TIPEX-III

2. Integrated Observations of TIPEX-III

3. Preliminary results from TIPEX-III

observations

4. Summary

Owing to a high elevation and a naturally harsh environmental condition, there are few meteorological operational stations over the Tibetan Plateau

Lack of routine operational meteorological observations

WRF model: large errors of modeling surface heat fluxes over Tibet

Climate models: large errors of modeling cloudiness over Tibet

(Wu and Zhou, 2011)

- > To increase data and improve the models' ability, CMA, CAS, and NSFC jointly initiated the TIPEX-III.
- > The objective of TIPEX-III
- To construct a 3D observation system of land surface, planetary boundary layer (PBL), troposphere, and stratosphere for understanding the earth-atmosphere coupled system over Tibet
- To provide new datasets for basic scientific research
- > TIPEX-III started in 2014 and will end in 2023.

Participants of TIPEX-III

- 30 units from CMA, CAS, and Chinese universities.
- More than 130 persons (scientists, and meteorologists)

> Multi-scale land and boundary-layer observational networks

Soil Temperature & Moisture Observations

- Designing a plateau-scale observation network and 4 regional-scale intensive networks
- The plateau-scale network: 46 sites; built in September, 2015
- The regional-scale network in Naqu: 33 sites; built in August, 2015
- The other three regional-scale networks: in the subsequent years

Planetary Boundary Layer Observation

- Designing a plateau-scale network with distance of approximately 500 km between two sites and a regional-scale network near Naqu (with distance of \sim 200 km).
- These networks consist of 16 sites.
- Building 13 sites in July, 2014 and one site in August, 2015

> Intensive radiosonde observation

Automatic radiosonde stations over western Tibet

- Building 3 radiosonde observational systems at Shiquanhe, Gaize, and Shenzha of western Tibet
- Starting observation in November, 2014; twice each day.

Cloud-precipitation physical process observation

- Using ground-based radars for observing cloud and raindrop properties in the central and eastern parts of the Tibetan Plateau near Naqu, Lingzhi, and Litang.
- Conducting observations at Naqu in July and August, 2014 and at Naqu and Lingzhi in July and August, 2015.

Airborne observations

- Using aircraft campaigns for measuring cloud and raindrop properties near Naqu
- Aircraft flights took off from Golmud of the northeastern TP and conducted measurements over Naqu in July, 2014

Ozone, aerosol, and water vapor observations in troposphere and stratosphere

- Designing a monitoring network at Shiquanhe, Lhasa, Linzhi, Kunming, Mangya, Tuotuohe, and Xining
- Conducting the observation at Linzhi in June-July, 2014, and at Shiquanhe, Lhasa, Kunming, and Xining in May-September, 2016.

Comparisons between TIPEX-III and previous experiments

Land-atmosphere physical processes over Tibet

- The first and second experiments over Tibet: short in the 1979 and 1998 summers; and focusing on land and boundary player processes.
- TIPEX-III: a longer time (10 years); and extending from the land surface process to the tropospheric and stratospheric physical processes by new observational tools.

> Spatial heterogeneity in surface sensible and latent heat fluxes

Median value of bulk transfer coefficients for 11 sites

Sites	Seng-ge Kambab	Baingoin	Namco	Amdo	Nagqu	Nyainrong	Lhari	Biru	Nyingchi	Dali	Wenjiang
CD	0.0096	0.0034	0.0038	0.0029	0.0044	0.0038	0.0105	0.0101	0.0080	0.0116	0.0126
Сн	0.0024	0.0027	0.0022	0.0024	0.0028	0.0032	0.0038	0.0034	0.0060	0.0045	0.0047

• Bulk transfer coefficient of surface sensible heat flux (C_h) : 2.4×10⁻³ in western Tibet, 2.2-3.8×10⁻³ in central Tibet, 6.0×10⁻³ in southeastern Tibet, and 4-5×10⁻³ to the east of Tibet.

(Wang and Xu et al., JGR)

Daily mean of surface heat fluxes (W m⁻²) from August 1 to 31, 2014

- There is a significant difference between western and central parts of Tibet, and relatively small difference within six sites of central Tibet .
- SH is larger in western Tibet than in central Tibet, but LH is much lower in western Tibet than in central Tibet.

(Zhao et al., BAMS, under review)

Daily RMSE (W m⁻²) between observation and reanalysis

- For *SH*, there are larger root-mean-square error (RMSE) over western Tibet than over central Tibet.
- Compared to SH, LH generally has larger errors.
- The ERA-Interim dataset has the lowest RMSE compared to other four reanalysis datasets.

Summer cloud physical features over Naqu

Airborne cloud particle images at Naqu on July 21, 2014

- The lowest TBB appears near Naqu.
- The dominant cloud particles were raindrop-size supercooled water, and there are less ice particles
- This result indicates that these clouds in this process were mainly produced by a warm-cloud process instead of an ice-cloud process.

(Chang and Guo, 2016, Chinese Science Bulletin)

Contribution of intensive radiosonde data over western Tibet to enhancing precipitation forecast

- Using the WRF model system with three-dimensional variational data assimilation (3DVAR), we examine the impact of intensive radiosonde data at Shiquanhe, Gaize, and Shenzha on precipitation forecast.
- When the intensive data are assimilated, the 24-hr rainfall forecast is remarkably improved.

RMSE of 24-hr, 48-hr, and 72-hr rainfall forecasts over the Yangtze River for June, July, August, and September in 2015

• When the intensive data are assimilated, the 48-hr and 72-hr rainfall forecasts over the Yangtze River are improved to some extent, especially for June, August, and September.

- TIPEX-III was initiated jointly by CMA, CAS, and NSFC, and was designed to conduct a long-term integrated observation by coordinating ground- and air-based measurement facilities.
- TIPEX-III have established multiscale land-surface and PBL observation networks over Tibet and a tropospheric radiosonde network over western Tibet, and executed an integrated observation mission for cloud-precipitation physical features and an observation task for atmospheric ozone, aerosol, and water vapor.
- Some TIPEX-III data have been applied to analyze the features of surface heat fluxes, cloud particle properties, and to improve the precipitation forecast skill.

Data share policy

- The validated TIPEX-III data will be open to the domestic and international scientific communities.
- When meteorologists complete the quality control of observation data and the product generation, the TIPEX-III data will be released after a data-protection period of 1 year.
- <u>http://data.cma.cn/tipex;</u> Email: tipex3@camscma.cn

Thank you!