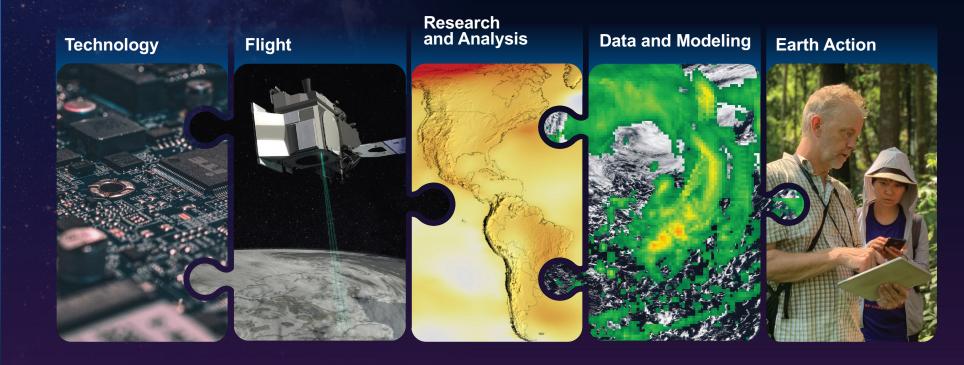
ional Aeronautics and Space Administration

XPL REEARTH


NASA Earth Science: A Personal View*

Jack A. Kaye Associate Director for Research NASA Earth Science Division

July 7, 2024

* Prepared with inputs from numerous colleagues from NASA HQ, centers, and the ESD investigator community

Advancing Earth System Science End-to-end

Earth Science to Action Strategy

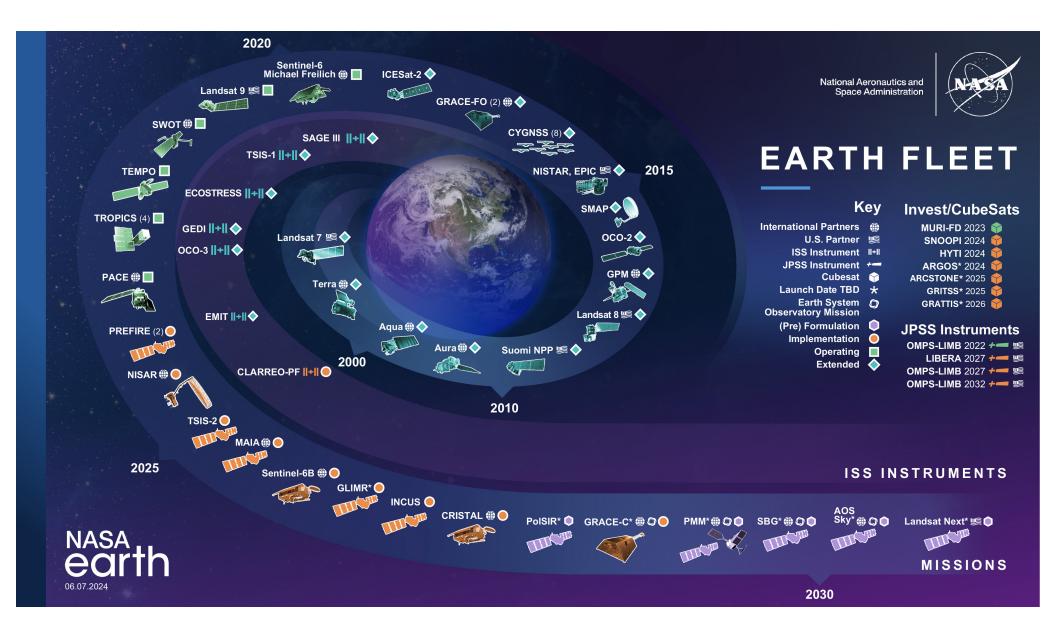
Virtuous Cycle

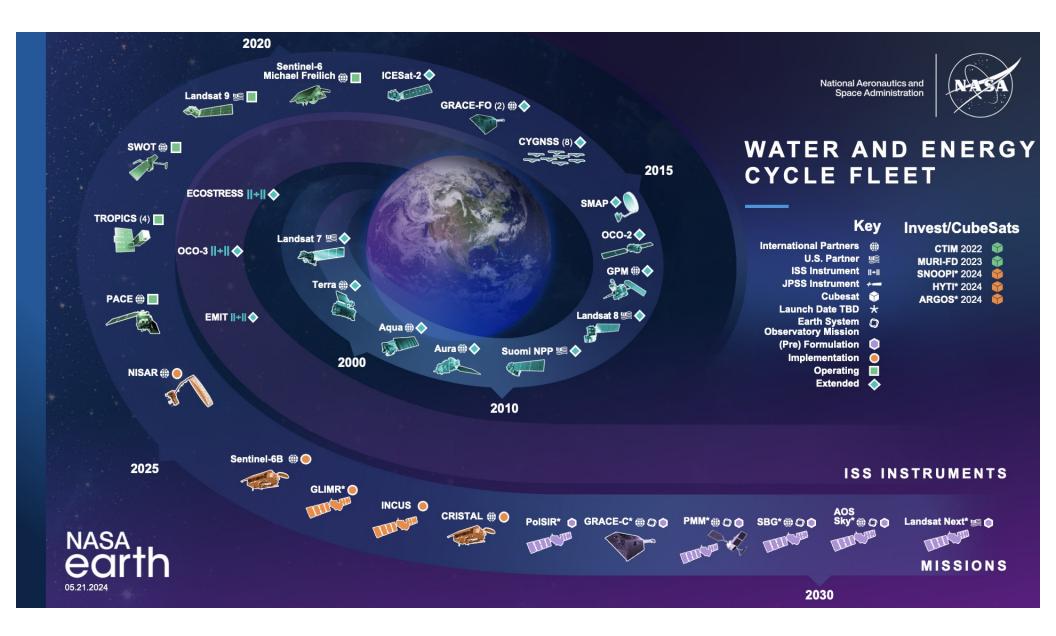
 User needs inform next iteration of programs, missions and initiatives

Public Understanding & Exchange

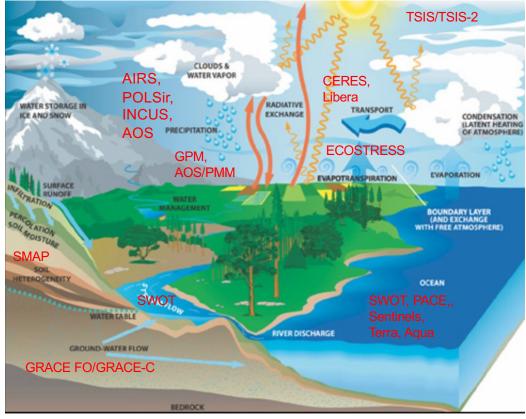
- Put more scientific understanding into public sphere
- Deliver applied science to users
- Participate in multi-way info exchange
- Use input to inform subsequent work

Solutions & Societal Value

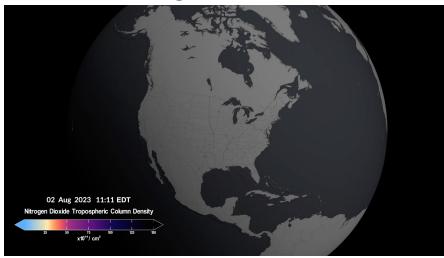

- Offer models, scientific findings and info through Open-Source Science principles
- Support climate services
- Provide science applications and tools to inform decisions

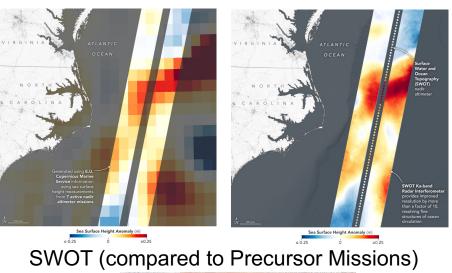

Earth System Science & Applied Research

- Grow scientific understanding of Earth's systems
- Develop predictive modeling for science applications and tools to mitigate, adapt and respond to climate change

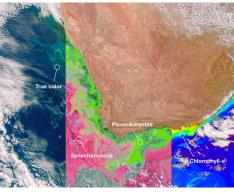

Foundational Knowledge, Technology, Missions & Data

- Technology innovation
- Earth observations missions
- Data collected from space, air and ground

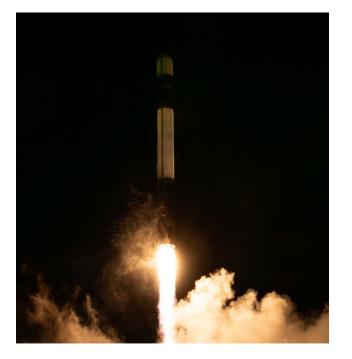

A "NASA View" of the Global Water and Energy Cycle*



* This is a SIMPLIFED view!



Early Results from Some of our Newer Satellites



TEMPO

PREFIRE

PREFIRE launches were accomplished on May 25 and June 5, 2024 by Rocketlab from their launch facility in Mahia, New Zealand! https://prefire.ssec.wisc.edu/

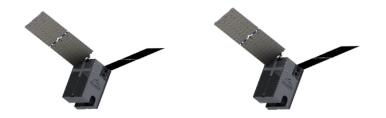
8

Earth Venture Mission-3: INCUS

PI: Susan van den Heever, Colorado State University Addressing why convective storms, heavy precipitation and clouds occur exactly when and where they do

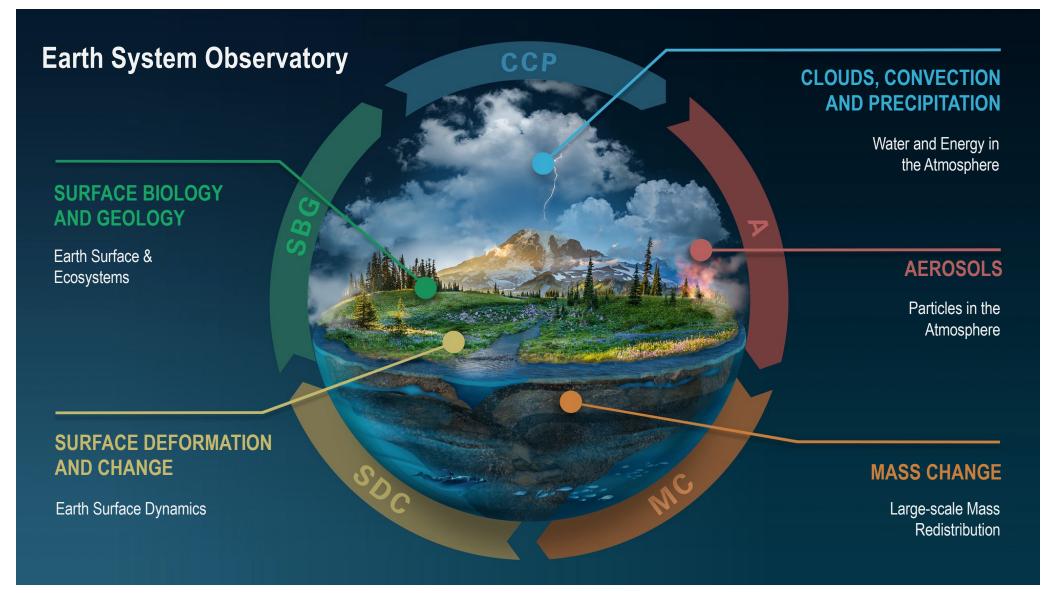
Three SmallSats

- JPL Ka-band radar with 5 beams (RainCube heritage)
- JPL cross-track scanning microwave radiometer (TEMPEST-D heritage)
- Tendeg deployable 1.6m Ka-band antenna
- Blue Canyon Technologies X-SAT Venus commercial bus

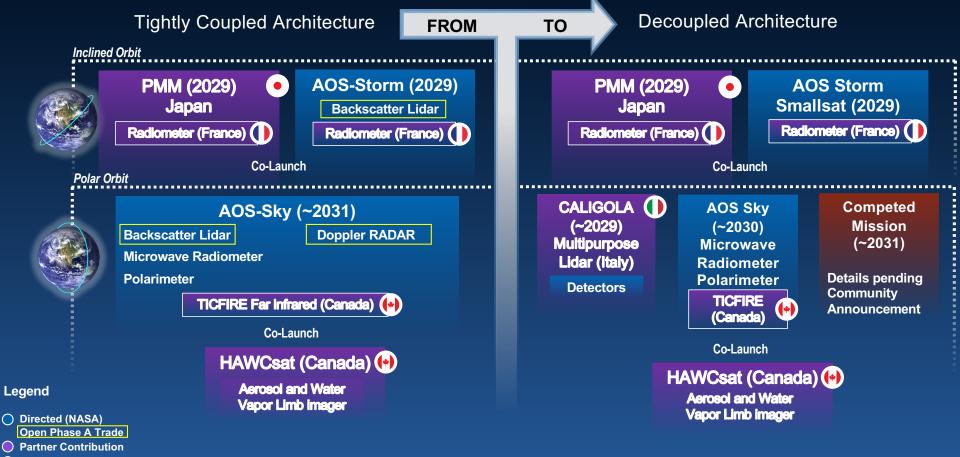


Polarized Submillimeter Ice-cloud Radiometer (PolSIR)

On May 22, 2023, NASA announced the selection of PolSIR as the sixth Earth Venture Instrument (EVI-6) investigation aimed at study of ice clouds to determine how and why they change throughout the day, which will provide crucial information about how to accurately simulate these high-altitude clouds in global climate models.


Mission Overview

- The 2-year investigation will comprise of two identical 12 U CubeSats, each with dual-band radiometers: 683-GHz (QV & QH), 325/1.5-GHz (QV), 325/3.5-GHz (QV), 325/9.5-GHz (QV & QH)
- Low earth orbit between 35° and 51° inclination separated by 3-8 hours
- Cost: \$37M (FY24) Class-D mission with Launch provided by NASA Launch Services Program outside cost cap
- Team: Vanderbilt University, NASA/GSFC, University of Wisconsin, Wisconsin: Blue Canyon Technologies, Virginia Diodes Inc., NOAA, Université Paris-Saclay
- Expected launch: Not earlier than 2027



Science Objectives

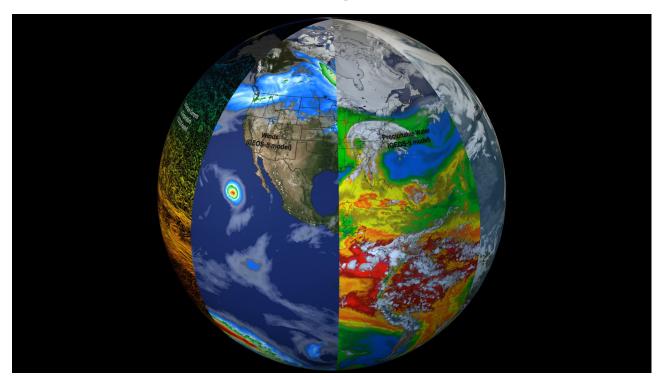
- Constrain seasonally influenced diurnal cycle of tropical ice water path (IWP) and particle diameter
- Determine the diurnal variability of ice clouds in the convective outflow areas
- Determine the relationship between shortwave and longwave radiative fluxes and the diurnal variability of ice clouds

Changes in the AOS Planned Acquisition under the Decouple, Partner and Compete Approach

Competed (NASA)

12

Earth System Explorers (ESE)



- Draft Announcement of Opportunity (AO) released on Dec 6, 2022
- Final AO was released May 2, 2023
- PI-Managed Mission Cost (PIMMC) cap of \$310M (FY24 \$)
- NASA will provide launch vehicle services
- Two-step selection process
- Initial selection announced May 7, 2024:

The Stratosphere Troposphere Response using Infrared Vertically-Resolved Light Explorer (STRIVE) The Ocean Dynamics and Surface Exchange with the Atmosphere (ODYSEA) Earth Dynamics Geodetic Explorer (EDGE) The Carbon Investigation (Carbon-I)

NASA Earth System Science

Atmospheric Composition Water and Energy Cycle Carbon Cycle and Ecosystems

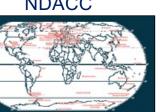
Earth Surface and Interior Weather and Atmospheric Dynamics Climate Variability and Change NASA Scientific Visualization Studio svs.gsfc.nasa.gov/30701

Research Opportunities for GEWEX-Related Activity at NASA*

- Research and Analysis Disciplinary Programs (only a few listed here!)
 - Terrestrial Hydrology
 - Radiation Sciences
 - Weather and Atmospheric Dynamics
 - o Modeling, Analysis, and Prediction
- Research and Analysis Interdisciplinary/Cross-Disciplinary Programs
 - Interdisciplinary Science
 - Remote Sensing Theory
 - o Earth Venture Suborbital (Budget is in flight program but R&A runs solicitation)
- Competed Science Teams for Operating Missions
 - o SMAP
 - CYGNSS
 - S-NPP/JPSS (including CERES)
 - SWOT/Other Altimetry
 - o GRACE FO
 - o GPM
- Earth Action (formerly Applied Sciences) (e.g., Water Resources)
- Technology (Instruments, Components, Information Systems, Cubesats)
- Decadal Survey Incubation (joint R&A/ESTO) Planetary Boundary Layer
- * This is a simplified view it doesn't include everything!

¹ MASA, Jerforgukian Lakontakry, California Institute of Technology, Pasadena, C MASA Coducting Space, Papil Centrel, Createric Heart, Con NaSA Langely Research Contrel, Heardport, VA Uwonshi (Haranghon), Sastite, WA Woods Hole Cocareographic Institution, Woods Healt, MA NaSA Goddard Institution & Space Studies, How York, NY Health Collage, CUMY, New York, NY

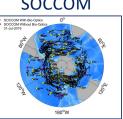
Examples of NASA-Supported Ground Networks

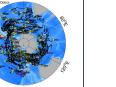

AGAGE

AERONET

MPLNet

Locations of 30 Pandoras
Locations of 16 Colorado 1 Canada 1 Tenerife Wallops Island
S GSFC 1 Boston 1 Houston Saint Louis
Saint Louis




SHADOZ

TOLNet

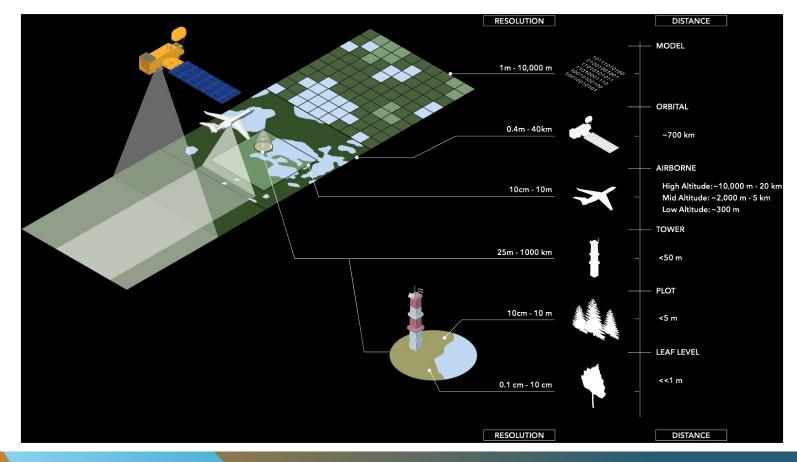
SOCCOM

Previous Site

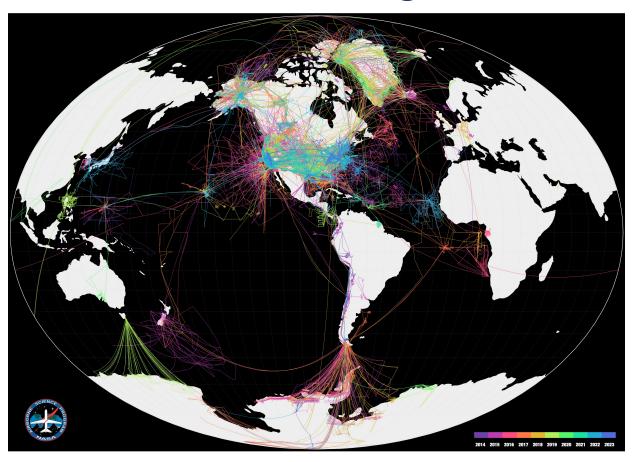
16

NASA Earth Science Division Airborne Fleet

DC-8's Final Return to AFRC – 4/1/24 after ASIA AQ



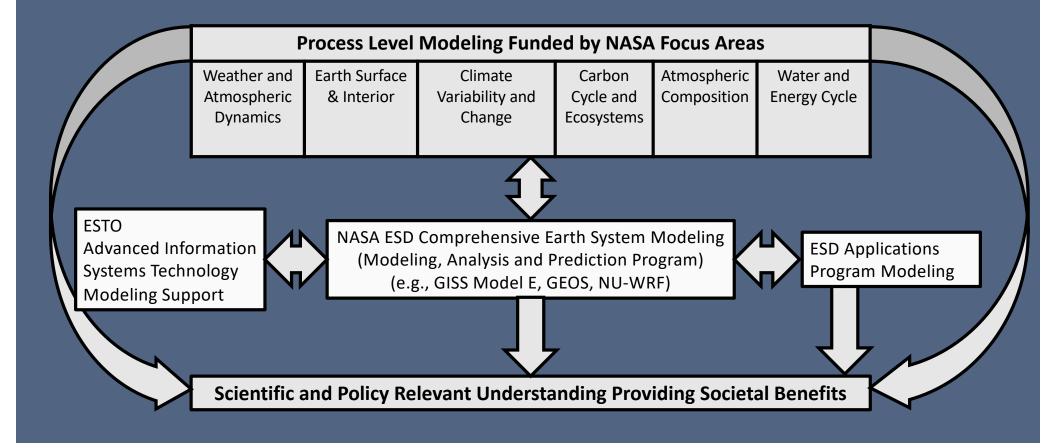
Newest Addition to Fleet – B-777 (at LaRC) – will replace DC-8 now that it's been retired!


What Airborne Science Means at NASA

- Airborne Science at NASA integrates unique capabilities in the following areas:
 - **Platforms:** airborne platforms that can fly instrument packages (from a single instrument to several dozen) to locations needed for the desired observations
 - Sensors: remote sensing and/or *in situ* sensors that can work individually or collectively to address science and/or technology questions and opportunities
 - **Systems:** data, information, and operational systems that enable data to be acquired, transmitted, shared, and to allow investigator interactions with crew to optimize flight trajectories
 - **People:** the human capital that allows airborne missions to be carried out safely and effectively in remote locations, frequently under harsh conditions with little indigenous local support; also the ability to design experiments/campaigns and turn acquired data into knowledge
 - **Opportunities:** program-directed and competitive solicitations for mission/campaign development and also instrument development/evolution; well-defined flight request approach for use of platforms/facility sensors
- The linkage among these is critical especially the "marriage" between platforms and sensors (pods/viewing ports for remote sensing instruments, well-characterized inlets for *in situ* sensors)
- Airborne Science is fully integrated with space-based measurements, surface-based measurements and modeling into an "integrated whole" with involvement of all components included in planning/design

Scaling Strategy for Field Campaigns

NASA Airborne Science Flights – 2014-2023



Earth Venture Suborbital-4 Selected Mission Concepts

Mission	Focus Area	Location(s) Prop.	Platform(s) Prop.	Leadership Team	Size*
PYRocumulonimbus EXperiment (PYREX)	Weather and Atmospheric Dynamics	Palmdale, CA Boise, ID Cold Lake, Alberta	ER-2 WB-57 (or GV) (or perhaps all on B777)	PI: David A. Peterson, Naval Research Laboratory - Monterey, Mid- Career DPI: Neil Lareau, University of Nevada, Reno, Early Career DPI: Olga Kalashnikova, Jet Propulsion Laboratory, Late-Career.	Big
Snow4Flow	Climate Variability and Change	Alaska, Arctic Canada, Greenland and Svalbard	DHC-6 Twin Otter DC3-T Basler DHC-4T Turbo Caribou	PI: John W. Holt, University of Arizona, Late-Career DPI: Lauren C. Andrews, NASA Goddard Space Flight Center, Early- Career DPI: Joseph A. MacGregor, NASA Goddard Space Flight Center, Mid-Career	Big
Landslide Climate Change Experiment	Earth Surface and Interior	California and Alaska	GIII	PI: Alexander Handwerger, Jet Propulsion Laboratory, Early-Career DPI: Noah Finnegan, University of California, Santa Cruz, Mid-Career DPI: Seung-Bum Kim, Jet Propulsion Laboratory, Late-Career	Small
Hemispheric Airborne Measurements of Air Quality (HAMAQ)	Atmospheric Composition	Mexico (Veracruz Ariport) South Korea (Osan Air Base) Italy (Aviano Air Base)	GV P-3B (Y2/3), B777 (Y4)	PI, James H. Crawford, NASA Langley Research Center, Late Career DPI - Laura Judd, NASA Langley Research Center, Early Career DPI - Brian McDonald, NOAA Chemical Sciences Laboratory, Early Career	Small
Nitrogen and Carbon Terrestrial Fluxes: Agriculture, Atmospheric Composition, and Ecosystems (NTERFAACE)	Atmospheric Composition	Palmdale, CA Lincoln, NE	P-3 or B777 B200, C-23 Sherpa, or King Air	PI: Glenn Wolfe, NASA GSFC, Mid-Career DPI: Emily Fischer, Colorado State University, Mid-Career DPI: Jeffrey Geddes, Boston University, Early Career	Small
FORTE: Arctic Coastlines – Frontlines Of Rapidly Transforming Ecosystems	Carbon Cycle and Ecosystems	Fairbanks, AK UAS from Deadhorse, AK	GV GIII (B200, Twin Otter) Drones	PI: Maria Tzortziou, City University of New York, Mid Career DPI: Antonio Mannino, NASA Goddard Space Flight Center, Late Career DPI: J. Blake Clark, NASA GSFC/UMBC, Early Career	Small

* Proposals selected as small will likely not utilize all locations and/or platforms

NASA Earth Science Division Modeling Capability

Key Types of International Engagement

Observations

- Bilateral cooperation in missions and related science
- Multi-lateral organizationally-mediated cooperation
- Field work (airborne, balloon, surface, shipborne)
- Surface-based measurement networks

Research, Applications, and Assessment

- Research: WCRP*, Future Earth*
- Applications: UN/SDGs, Disasters
- Assessment: IPCC, WMO/UNEP, IPBES, WOA, AMAP
- Internationally-Focused Opportunities

Education and Capacity Building

- Education: GLOBE
- Capacity Building: SERVIR, ARSET, others
- * NASA supports GEWEX IPO, co-supports CliC IPO (with NSF), and AIMES (Future Earth) IPO, and co-supports GLP IPO (Future Earth, with NSF)

GLOBE 2023 Annual Meeting