Added value of a Convection Permitting Model in simulating Atmospheric Water cycle over Asian Water Tower

Motivation To understand the **wet bias** in simulating precipitation over the Tibetan plateau through the comparison of the armospheric water cycle between convection parameterized and permiting models.

- \checkmark External water vapor **transport** \rightarrow Fin & Fout
- \checkmark Atmospheric moisture **converting** into precipitation \rightarrow P-a & P-e
- \checkmark **Precipitation recycling ratio** \rightarrow P-e / P
 - significantly and positively correlated with convection
- indicate intensity of the land-atmoshpere interaction

inflow while red represents outflow.

Yin Zhao, Tianjun Zhou*, Puxi Li, Kalli Furtado, Liwei Zou Chinese Academy of Meteorological Sciences, China Meteorological Administration

E-mail: zhaoyin@cma.gov.cn

Atmospheric Water cycle

Fig 2. The vertical profile of the water vapor transport (kg/kg m/s) through the 14 edges of the TP in terms of the difference between CPM and LSM. a. Edges from 1 to 6. b. Edges from 14 to 7. Blue represents

Fig 3. The difference in the precipitation (shading, mm/day) and the horizontal winds (vector, m/s) at 500hPa over the TP between the CPM and LSM simulations.

For more details

Yin Zhao; Tianjun Zhou; Puxi Li; Kalli Furtado; Liwei Zou; Added value of a Convection Permitting Model in simulating Atmospheric Water cycle over the Asian Water Tower, *JGR-A*, 2021, 126(13): e2021JD034788.

Fig 4. The schematic diagrams of the water cycle over the TP in **a**. LSM and **b**. CPM. Units: 10⁷ kg s⁻¹.

Why does convection parameterized model have larger wet bias?

- cycle over the TP.

ResearchGat

More external moisture inflow ? NO.

• The total moisture inflow is even larger in the CPM. • Less net moisture convergence in CPM is dominated by stronger outflow rather than inflow.

More water vapor converting to precipitation? Yes.

 Larger fraction of the advected and evaporated moisture converts to precipitation, and thereby results in a larger wet bias in the LSM simulation.

• LSM has overestimated the atmospheric water

• Larger precipitation recycling ratio? Yes.

• The larger precipitation recycling ratio in the LSM indicates more convection due to the deep convection parameterization and an overestimation of the land-atmospheric interaction.