

Global-Scale Drought Risk Assessment: Application of the Surface Water-Groundwater Integrated Analysis Simulator GETFLOWS OSouki Fukazawa, Kazuhiro Tada // sfukazawa@getc.co.jp // Geosphere Environmental Technology Corp. taset

- ✓ Water risk assessment tools like Aqueduct are being user worldwide.
- ✓ Global assessment tools have limitations in quantifying risks for specific scenarios, especially the risk associated with the increase in **local** water demand.
- By extending the watershed scale approach to a global scale, this study attempts a global drought risk assessment using GETFLOWS (Tosaka et al., 2000)
- ✓ GETFLOWS is a simulator developed for analyzing the Geo-Hydrological cycle system at a watershed scale (Fig.1).

Settings (about Japan Models)

Targets

- \checkmark 119 river discharge or dam inflow in Hokkaido on a daily basis (8/1/2007 - 7/31/2009)
- ✓ Selected sites without dams upstream to avoid water use impacts
- Create one model per observation point
- space resolution : 500 m / time resolution : 1 day
- Within the 33 models that were engineering-judged to be explanatory in the analysis with the initial settings, 11 were used for training models and the rest for test models

Tuning parameters

- Following **12 common coefficients** for 119 models are optimized.
- ➢ 6 permeability coefficients and 6 porosity coefficients for geological classification
- The geological classification is divided into 6 categories based on topsoil, Quaternary, and 4 Tertiary layers, determined by calculated weathering looseness from surrounding terrain data.

Objective Function

- The commonly used indicators (MAE, NSE, KGE...) could not reproduce low water.
- non-parametric KGE (Sandra Pool, Marc Vis & Jan Seibert, 2018)
- The mean value of non-parametric KGE calculated using the flowrate(Q) and its inverse(1/Q)
- Snow accumulation and snowmelt are weighted with the weight of other periods due to the large uncertainty of weather data. Objective value is sum of objective functions of training models.
- **Optimization Methods**
- Optimization Tool : Optuna (T.Akiba, et al., 2019)
- one of Bayes' theorem called Tree-Structured Parzen Estimator Results
- ✓ Objective function : training/test models \cong 0.60, other models \cong 0.32.(Fig.2)
- ✓ Good reproducibility of transient analysis(Fig.3)
- \checkmark Parameters at topsoil and shallow geology are dominant.

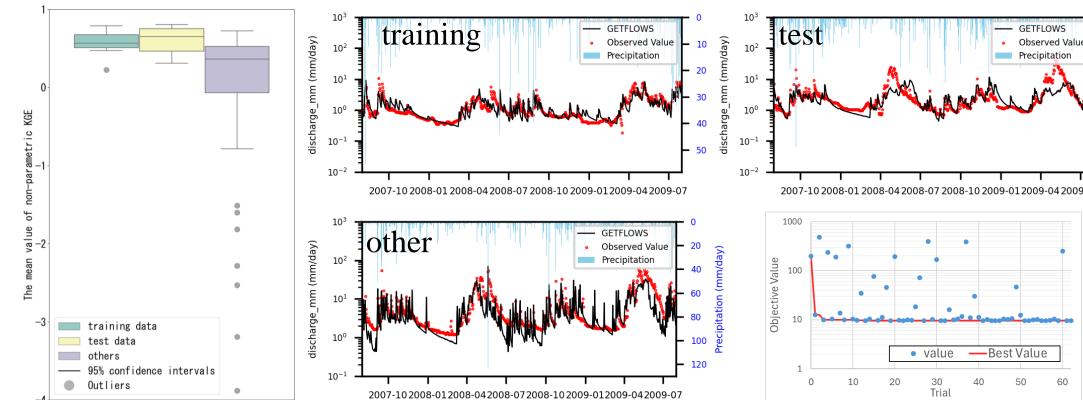


Fig.2 objectives boxplot Fig.3 Examples compared with observed / optimization histo

idation al and alibration

Introduction

5

ept

 \bigcirc

OD

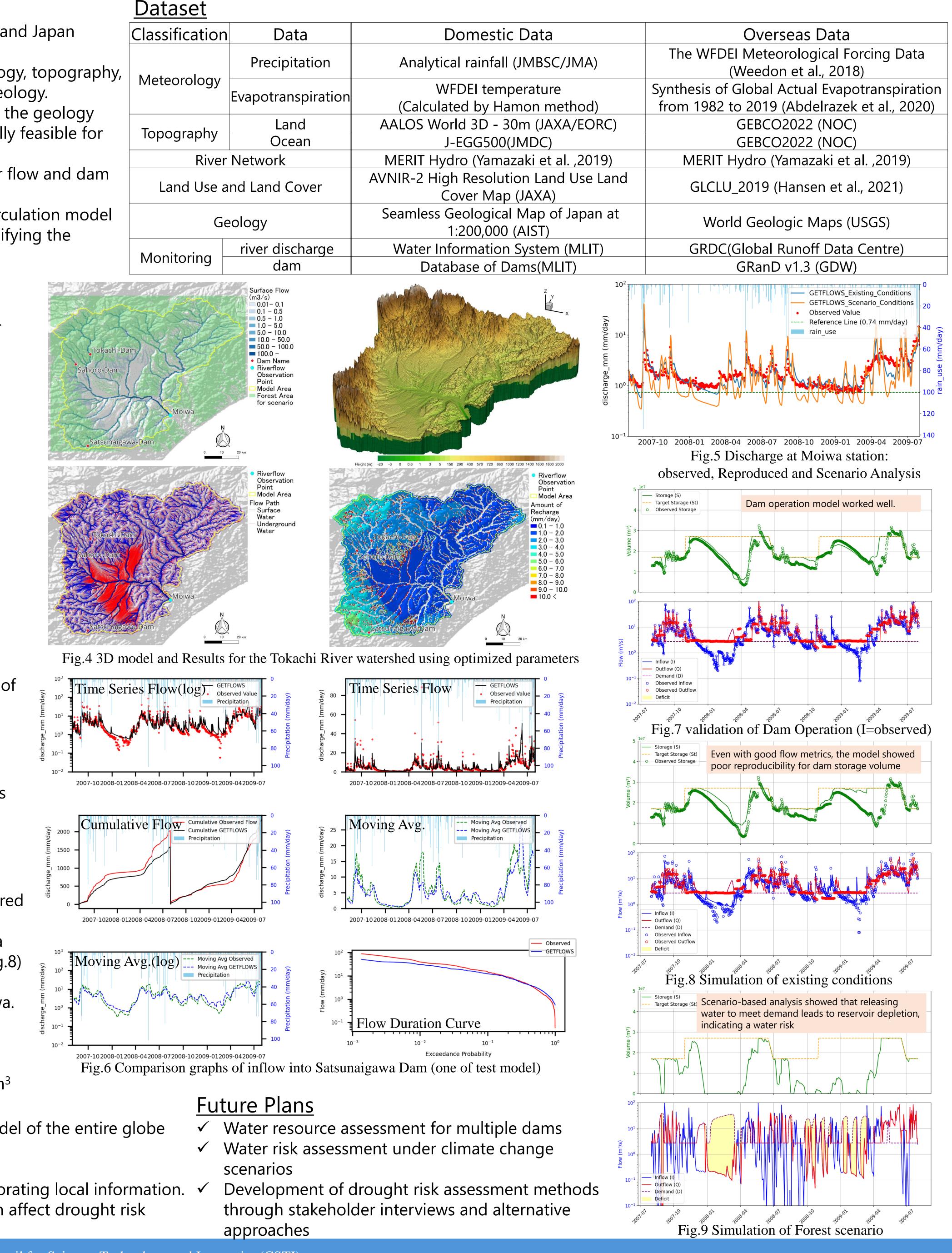

odel

Fig.1 Concept of Geo-Hydrological Cycle System

<u>Concept</u>

- Separating the Global dataset and Japan dataset.
- Using Open data on meteorology, topography, river network, land use, and geology.
- Aggregating and Reclassifying the geology into a number that is realistically feasible for parameter matching.
- Validating the model with river flow and dam inflow on a daily basis.
- Quickly creating a 3D water circulation model anywhere in the world by specifying the target area

160-	Tryuron	target area
		Purpose
		 Drought risk assessment that reflects local conditions Evaluation including dam operations to give a stable water supply throughout the year Future risk assessment in scenario analysis
		Proposal for Dam Operation Formulation
d		 ✓ Variables : S : Storage Volume C : Storage Capacity S_t : Target Storage Volume I : Inflow Q : Outflow ✓ Governing Equations : $\Delta S = I^n - Q^n = S^n - S^{n-1}$ $0 \le S^n \le C$ $D^n \le Q^n \le Q_{max}$ minimize: $(S^n - S_t^n)^2$
		Q _{max} : Maximum Outflow D : Demand Target Station and Dam
	essn	 ✓ Dam Operation : Satsunaigawa Dam in Tokachi Riv watershed(Fig.4)
	rought Risk Assessment	 ✓ Demand : 70m³/s (0.74 mm/day) at Moiwa station(Fig.5) ✓ The shortfall at Moiwa is adjusted by the discharge of Satsunaigawa Dam. Based on observed values, a discharge of 2.8 m³/s is assumed in normal periods.
5)	ght F	 Reproducibility of Satsunaigawa Dam (Fig.6). NSE=0.723, KGE=0.592, npKGE=0.820, logNSE=0.711
-	n	Scenario Condition :
L.	Drc	✓ All forests in the watershed(Fig. 4) are devastated, topsoil is washed away, and bedrock areas are outcropped.
nt		 Forest topsoil permeability and Manning's roughness are
5.		modified, with all other conditions remaining the same.
		<u>Results</u>
		 The Formulation of the dam operation worked well compare to the actual data.(Fig.7)
		 ✓ The reproducibility of the existing conditions analysis has a
É		significant impact on the evaluation of dam operations.(Fig.8
		 In the existing conditions analysis, the operation of Satsunaigawa Dam ensured the required flow rate at Moiwa
		\checkmark But in the scenario, the dam storage was depleted and the
- 0 - 10 (Áep/		 required flow rate could not be secured.(Fig.9) ✓ Proposal of water risk index for dam operation
- 00 - 00 - 00 - 00 - 00 - 00 - 00 - 0		✓ Shortage Days = 204, Total Shortage Volume=3.4x10 ⁸ m ³
- 40 id - 50	IJS	Conclusions
,	Conclusions	 Developed a system that can quickly create a valid 3D mode when a region is specified.
	Ju	 Proposed and validated Dam Operation Formulation.
	onc	 Established drought risk assessment methodology incorpor
- 117 7	Ŭ	 Improving the accuracy of the 3D model is crucial as it can a assessment values.
ory		

