Evaluation and Classification of Water Quality Characteristics of Lakes in Hokkaido

1. Introduction

- Hokkaido has more than 100 diverse natural lakes
- Regular water quality monitoring is conducted only current water quality in small and medium sized lak
- Considering water resource governance and the pressure of the pre tourism and biodiversity, it is critical to delve into the

The **purpose** of this study is...

- To conduct a comprehensively survey the water qua marshes to determine the current water quality leve
- To evaluate water quality characteristics and classify regional characteristics of Hokkaido.
- Results can be used to determine factors that shape changes (including climate change impacts).

3. Results

Representation of water quality characteristics by PCA

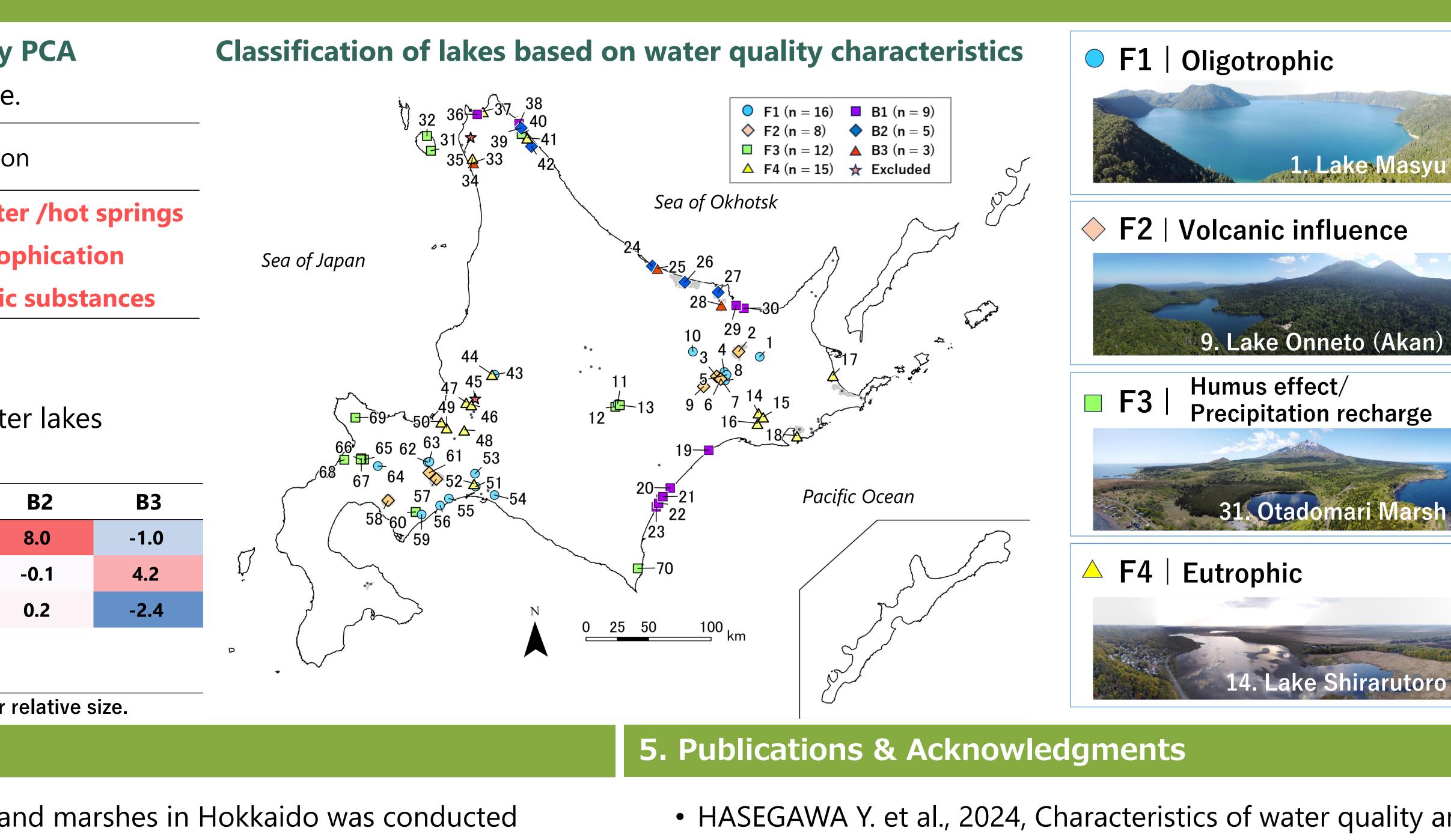
• 3 components with large eigenvalues were extracte.

Indicatio	High positive	Principal
multatio	loadings	Component
influence of seawate	all major ions	PC1 (42%)
degree of eutro	COD, TN,TP, Chl-a	PC2 (32%)
influence of humic	UV-abs.DOC,	PC3 (8%)

*Percentage figures indicate the contribution ratio

Characterization by Hierarchical Cluster Analysis

• The lakes were classified into 4 clusters of freshwater lakes (F1 – F4) and 3 clusters of brackish lakes (B1 - B3).


	F1	F2	F3	F4	B1	
PC1	-0.8	-0.5	-1.4	-1.3	1.7	
PC2	-1.7	-2.5	-1.1	2.2	1.7	
PC3	-0.3	-0.3	1.2	-0.2	0.1	
Notes	HCO ₃ rich	High EC, SO4 rich	Low EC, Cl rich			

*Numbers indicate principal component scores, color represents their relative size. 4. Discussion & Summary

- A comprehensive water quality survey of 70 lakes and marshes in Hokkaido was conducted and their water quality characteristics were evaluat
- Lakes were <u>classified according to their geographic</u> trophic level, and salinity environment.

	2. Met
and marshes.	• T a
y for some large lakes (and <u>not sure about</u>	• Fi
<u>kes</u> .).	se
rotection of important sectors such as	ar
the complex dynamics of lake environments.	• W
	ch
	са
uality of small and medium-sized lakes and	(N
<u>/el</u> .	• St
fy lakes and marshes according to the	lis
	• St
	ut
be water quality and trends in long-term	*1 Exc *2 For

ated using statistical methods.	
ical and topographical characteristics,	

Research Institute of Energy, Environment and Geology / Hokkaido Research Organization

Session: 23: Human-Climate-Water Nexus, and Water Security, Management, and Sustainability

thodology

Farget | <u>70 small and large natural lakes and marshes</u> (covering an area of 0.01km² or more). **ield surveys** At least once across each of the 70 lakes and marshes, during the non-snow seasons from 2021 to 2023. Basic water quality metrics were observed at the <u>center of the lake</u>, ind surface water samples were collected.

Nater quality analysis items | Transparency, pH, total nitrogen (TN), total phosphorus (TN), chemical oxygen demand (COD), suspended solids, chlorophyll-a (Chl-a), dissolved organic carbon (DOC), UV absorbance, and major ions (sodium (Na⁺), potassium (K⁺), magnesium Mg^{2+}), calcium(Ca²⁺), chloride (Cl⁻), nitrate (NO₃⁻), sulfate (SO₄²⁻), and bicarbonate (HCO₃⁻)). Statistical analysis step1 | Principal Component Analysis (PCA) using the 17 parameters isted above^{*1}.

Statistical analysis step2 | <u>Hierarchical Cluster Analysis</u> for both freshwater and brackish lakes utilizing principal component scores^{*2}.

xcluded 2 lakes with multiple outliers.

or freshwater lakes, supplementary explanatory variables such as electrical conductivity (EC) and anion equivalent ratio were introduced.

• HASEGAWA Y. et al., 2024, Characteristics of water quality and basin environment in 70 lakes and marshes in Hokkaido, Research Institute of Energy, Environment and Geology Bulletin, No.3, pp45 – 59.

• Magazine of Lakes "Lakes of Hokkaido 3rd Edition" will be published in spring 2025!

Yoshiki HASEGAWA*1 1.Hokkaido Research Organization E-mail hasegawa-yoshiki@hro.or.jp

> **B**1 Middle salinity, eutrophic 19. Pashukurutou Marsh ◆ B2 | High salinity, mesotrophic 26. Lake Saroma ▲ B3 Low salinity, hypertrophic 33. Lake Panke (Sarobetsu) **Excluded** (Extreme hypertrophic)