Long-Term Observations of Water Vapor, Clouds and Precipitation in the Arctic: Trends and Process Studies at the Research Station AWIPEV, Ny-Ålesund (Svalbard) **UNIVERSITY**

Kerstin Ebell¹ (kerstin.ebell@uni-koeln.de), C. Buhren¹, S. Dahlke², M. Maturilli², C. Ritter², M. Lauer¹ ¹ Institute of Geophysics and Meteorology, University of Cologne, Cermany, ² Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany

1. Motivation

- Enhanced warming of the Arctic, i.e., Arctic amplification, directly affects the hydrological cycle
- Ny-Ålesund (Svalbard) is located in the warmest region of the Arctic [1], where also the local amplification is large [2]
- Detailed measurements of water vapor, clouds, and precipitation are crucial to better understanding multi-scale processes and trends
- \rightarrow In this study: Exploitation of the comprehensive measurements performed at the Arctic research station AWIPEV at Ny-Ålesund, Svalbard

Fig. 4: Seasonal mean IWV from radiosonde measurements based on [11,12,13]. Updated plot from [9]. *indicates a significant trend.

(Fig. 4)

patterns Rapid atmospheric moisture transitions via, e.g., enhanced poleward transport (*"*atmospheric rivers", AR)

resolved MWR

Fig. 6: Example of an atmospheric river event. a) ERA5 IWV and detected AR (red line) on 13 Jan 2018, 20 UTC. b) IWV from HATPRO MWR (~2 s resolution). Missing data due to data quality filtering (rain). [5]

9th GEWEX Open Science Conference, Sapporo, Japan, 7 -12 July 2024

Radiosondes show a significant moistening trend for 1993-2022

- Large intra-annual variability of monthly mean IWV from HATPRO MWR (Fig. 5) Interannual variability driven by variability in large-scale weather
- \rightarrow only captured by highly temporally measurements (Fig. 6)

2. Site and instrumentation

Fig. 1: Location of Ny-Ålesund on Svalbard Norwegian Polar Institute, https://toposvalbard.npolar.no

- Ny-Ålesund (78.9°N, 11.9°E) is characterized as a tundra site in a complex environment (fjord, mountains, glaciers) (Fig. 1)
- Comprehensive instrument suite at AWIPEV (Fig. 2) with enhanced cloud and precipitation observations Ξ since 2016 [3]
- Long-term measurements, e.g., standard meteorology [6], radiosondes [9], radiation [10], since \sim the 1990s

observatory, Ny-Ålesund.

 \rightarrow significant increase of annual mean 2 m temperature; largest increase in DJF (Fig. 3)

OF COLOGNE

Fig. 2: University of Cologne and AWIPEV instrumentation (selection only) at the AWIPEV atmospheric

Fig. 3: Annual (blue) and DJF (red) mean 2 m temperature based on [7,8]. Updated plot from [6]. The trends for all seasons are reported as well. *indicates a significant trend.

average monthly cloud occurrence 2016-2023 78.2 % any cloud mixed-phase 41.8 % 13.3 %

- High cloud occurrence of 78%
- Cloud liquid water frequently
- even at temperatures well
- below 0°C (Fig. 7 & 8)
- Large interannual variability of monthly mean LWP (Fig. 8)

5. Precipitation and atmospheric rivers

- Arctic precipitation often related to atmospheric rivers (AR) and associated weather systems (cyclones, fronts) [16]
- ARs occur on average only 8% of the time at Ny-Ålesund (Fig. 9)
- 42% of precipitation amount occurs when atmospheric rivers are present (22% for O-AR; Fig.9, Tab. 1)
- cyclones contribute 40% of the total precipitation (21% for O-CY)

Tab 1: Contribution of atmospheric rivers (AR),

 cyclones (CY), and fronts (FR) to the precipitation amount (in %). From [5].

2018	2019	2020	2021	
29	24	11	15	
7	2	6	3	
8	5	9	5	
5	9	8	2	
18	26	26	24	
3	3	4	6	
3	4	5	5	
27	27	30	40	
	2018 29 7 8 5 18 3 3 27	201820192924728599182633427	201820192020292411726859598182626334345272730	2018201920202021 29 24 11 15 7 2 6 3 8 5 9 5 5 9 8 2 18 26 26 24 3 4 6 5 3 4 5 5 27 27 30 40

6. Outlook

- precipitation observations at AWIPEV, Ny-Ålesund

- Linkage of precipitation to the associated cloud system
- precipitation at Ny-Ålesund

Acknowledgements:

We gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number 268020496 – TRR 172, within the Transregional Collaborative Research Center "ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)^{3"}. We also thank AWIPEV and in particular the AWIPEV on-site team for their continuous support.

Continuous time series of comprehensive water vapor, cloud, and Intensive observation period for water in all its phases ("IOP4H2O") planned for 2025, incl. new G band radar (\rightarrow in-cloud water vapor profiles) • Focus on extreme precipitation events at Ny-Ålesund \rightarrow strongly coupled to enhanced water vapor transport from lower latitudes; trends?

Temporal variability of water vapor and the impact on clouds and

References: A detailed list of references can be found here https://uni-koeln.sciebo.de/s/pB2Z436QydPJQrJ

