Differential absorption G-band radar operated on an airborne platform for Arctic clouds and water vapor observations

Mario Mech¹, S. Schnitt¹, J. Goliasch², P. Krobot¹, N. Risse¹, T. Rose², L. Bühler¹, and S. Crewell¹

¹University of Cologne ²Radiometer Physics GmbH

contact: mario.mech@uni-koeln.de

GEWEX - July 7 - 12, 2024, Sapporo, Japan

Radars for cloud and precipitation studies

Last decades have seen the emergence of cloud and precipitation radars

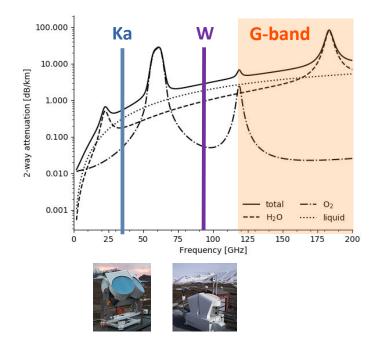
- Spaceborne for global assessments
 - \rightarrow CloudSat -> EarthCARE: unique insights into cloud vertical structure
 - \rightarrow GPM: dual frequency radar for quantitative precipitation
- Airborne radar operation as satellite demonstrators and validation tools
- Latest technological developments with ground-based radars

Radars for cloud and precipitation studies

Last decades have seen the emergence of cloud and precipitation radars

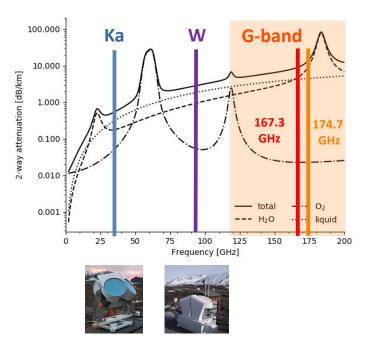
- Spaceborne for global assessments
 - \rightarrow CloudSat -> EarthCARE: unique insights into cloud vertical structure
 - \rightarrow GPM: dual frequency radar for quantitative precipitation
- Airborne radar operation as satellite demonstrators and validation tools
- Latest technological developments with ground-based radars

- Sensitivity to small particles (→ higher frequencies)
- Characterization of hydrometeor microphysics (→ multiple freqs)
- Water-vapor (profiles) within clouds / virgae



Why G-band radar?

- 94 GHz (W-band) cloud radars have become workhorses for cloud profiling from various platforms
- Multiple frequency measurements (X, K, W) for hydrometeor characterization
- G-band radars have been proposed* to address gaps
 → can expand multi-frequency applications
 - \rightarrow dual G-band radars as Differential Absorption Radar (DAR)
- Today, less than a handful of experimental G-band radars exist (each limited DAR only, no Doppler, airborne, lab, ground..)


*Battaglia, A., C. D. Westbrook, S. Kneifel, P. Kollias, N. Humpage, U. Löhnert,, J. Tyynelä, and G. W. Petty, 2014: G band atmospheric radars: new frontiers in cloud physics, Atmos. Meas. Tech., <u>doi:10.5194/amt-7-1527-2014</u>.

Why G-band radar?

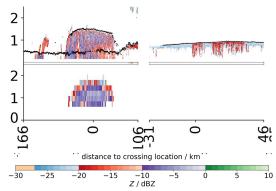
- 94 GHz (W-band) cloud radars have become workhorses for cloud profiling from various platforms
- Multiple frequency measurements (X, K, W) for hydrometeor characterization
- G-band radars have been proposed* to address gaps
 → can expand multi-frequency applications
 - \rightarrow dual G-band radars as Differential Absorption Radar (DAR)
- Today, less than a handful of experimental G-band radars exist (each limited DAR only, no Doppler, airborne, lab, ground..)

Why DAR?

- Measurements at two frequencies along the 183 GHz line allow to derive in-cloud water vapor profiles
- Profile extension via simultaneous passive measurements

*Battaglia, A., C. D. Westbrook, S. Kneifel, P. Kollias, N. Humpage, U. Löhnert,, J. Tyynelä, and G. W. Petty, 2014: G band atmospheric radars: new frontiers in cloud physics, Atmos. Meas. Tech., <u>doi:10.5194/amt-7-1527-2014</u>.

Why G-band radar?


- 94 GHz (W-band) cloud radars have become workhorses for cloud profiling from various platforms
- Multiple frequency measurements (X, K, W) for hydrometeor characterization
- G-band radars have been proposed* to address gaps
 - \rightarrow can expand multi-frequency applications
 - \rightarrow dual G-band radars as Differential Absorption Radar (DAR)
- Today, less than a handful of experimental G-band radars exist (each limited DAR only, no Doppler, airborne, lab, ground..)

Why DAR?

- Measurements at two frequencies along the 183 GHz line allow to derive in-cloud water vapor profiles
- Profile extension via simultaneous passive measurements
- Especially suited for (supersaturated) ice clouds and the Arctic, where most clouds experience light precipitation (missed by CloudSat)
- Opportunity to study moisture recycling (evaporation rate)

*Battaglia, A., C. D. Westbrook, S. Kneifel, P. Kollias, N. Humpage, U. Löhnert,, J. Tyynelä, and G. W. Petty, 2014: G band atmospheric radars: new frontiers in cloud physics, Atmos. Meas. Tech., <u>doi:10.5194/amt-7-1527-2014</u>.

Schirmacher et al., 2023, AMT

GRaWAC: G-band Radar for Water Vapor and Arctic Clouds

Frequency modulated continuous wave (FMCW) radar

Dopplerized, dual-frequency measurements at 167.3 and 174.7 GHz

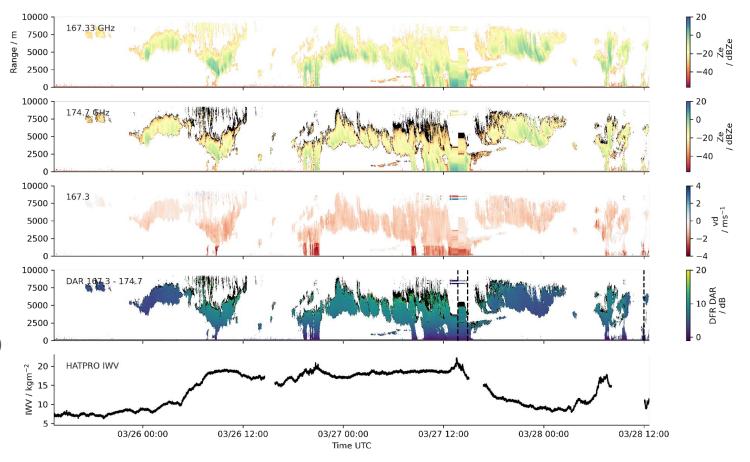
Versatile deployment from ground, ship, and aircraft under all weather conditions

Frequencies ideal for Differential Absorption Radar: retrieval of water vapor profiles in all-weather conditions [1,2,3]

parameter	specification	
frequency / GHz	167.3 ± 0.1	174.7 ± 0.1
wavelength / mm	1.8	1.7
transmit power / mW	70	90
gain / dB	54.6	
receiver noise / dB	5.5	
receiver intermediate frequency / MHz	4	
dynamic range / dB	58	
antenna diameter / m	0.5	
beam width / $^\circ$	0.36	
power consumption / W	700	
weight / kg	116	
dimension / m ³	115 x 90 x 90	

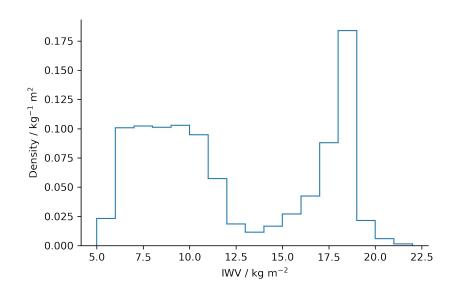
[1] Lebsock et al., 2015; [2] Roy et al., 2020; [3] Millan et al., 2024

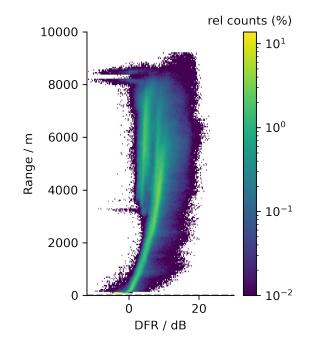
Ground based deployment in March 2024

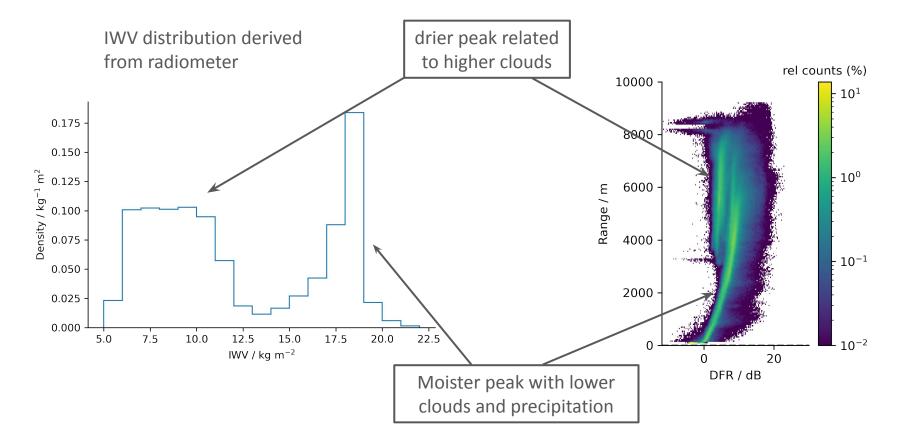

Reflectivity at 167.3 GHz

Reflectivity at 174.7 GHz (black colors: nan-values due to post-processing)

Mean Doppler velocity at 174.7 GHz


Dual-Frequency Ratio DFR = $Ze_{167.3} - Ze_{174.7}$ (black colors: nan-values due to post-processing) (black -- : sounding launches)


HATPRO Column water vapor (IWV)


Bimodality in IWV distribution reflected in GRaWAC DAR CFAD

IWV distribution derived from radiometer

Bimodality in IWV distribution reflected in GRaWAC DAR CFAD

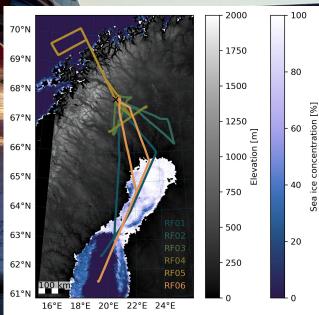
Humidity profiles and Arctic Mixed-phase clouds as seen by Airborne G-W-band radars

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

OLAR

Humidity profiles and Arctic Mixed-phase clouds as seen by Airborne G-W-band radars

AR

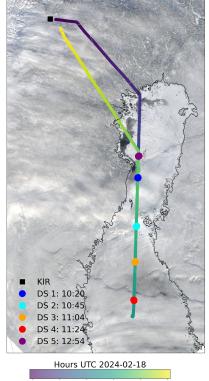

Kiruna (Sweden) - Arena Arctica

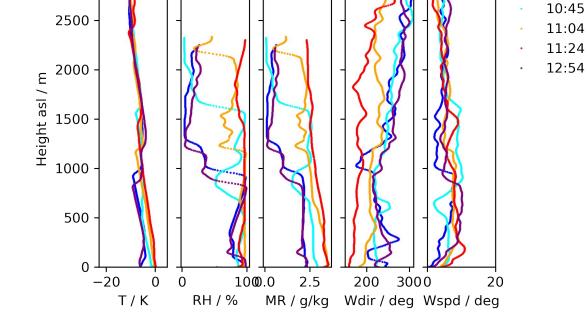
7. to 22. February 2024

Polar 6 research aircraft (BT-67) from AWI

GRaWAC, MiRAC-A, MiRAC-P, KT-19, dropsondes

6 research flights over the Gulf of Bothnia and the Norwegian Sea





RF06 - 19.2.2024

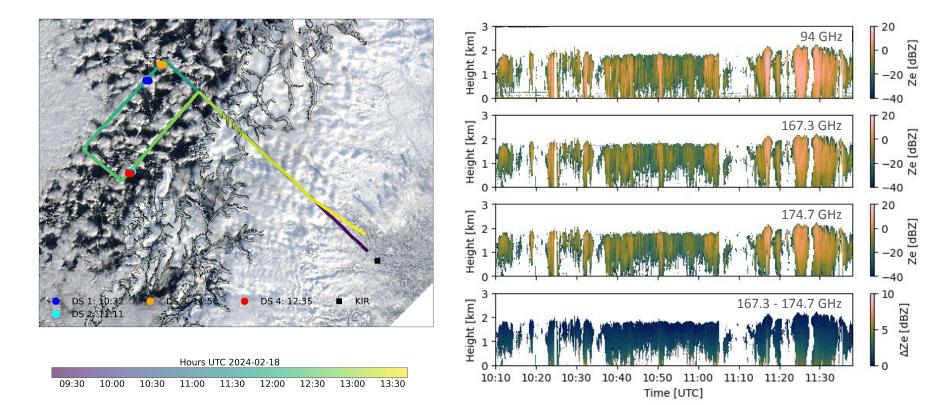
multiple cloud layers over the Gulf of Bothnia

3000 г

10:20

.

09:00 10:00 11:00 12:00 13:00 14:00


RF06 - 19.2.2024

DS 4 W2 T 20 94 GHz Height [km] och Ze [dBZ] 0 -40 20 167 GHz Height [km] o ²⁰ Ze [dBZ] 2 -40 ₽ 20 3 174 GHz Height [km] o [–] o Ze [dBZ] -40 10 KIR З - 174 GHz Height [km] 167 DS 1: 10:20 ΔZe [dBZ] DS 2: 10:45 DS 3: 11:04 5 DS 4: 11:24 W2 DS 5: 12:54 0 Hours UTC 2024-02-18 11:25 11:30 11:35 11:40 Time [UTC] 09:00 10:00 11:00 12:00 13:00 14:00

multiple cloud layers over the Gulf of Bothnia

RF05 - 18.2.2024

cloud streets with open and closed cells over the Norwegian Sea

Summary and what to come

GRaWAC: G-band Radar for Water Vapor and Arctic Clouds

Dopplerized, dual-frequency FMCW radar at 167.3 and 174.7 GHz

Versatile deployment: ground, ship, and aircraft

Differential Absorption Radar technique: continuous retrieval of in-cloud and in-precip water vapor profiles - **DAR signal with more than 10 dB**

Unprecedented insights into mixed-phase cloud processes

Successfully conducted six research flights during **HAMAG** test campaign

Summary and what to come

GRaWAC: G-band Radar for Water Vapor and Arctic Clouds

Dopplerized, dual-frequency FMCW radar at 167.3 and 174.7 GHz

Versatile deployment: ground, ship, and aircraft

Differential Absorption Radar technique: continuous retrieval of in-cloud and in-precip water vapor profiles - **DAR signal with more than 10 dB**

Unprecedented insights into mixed-phase cloud processes

Successfully conducted six research flights during HAMAG test campaign

Future deployments

Polarstern ship cruise PS144: **VAMPIRE** (Water Vapor, Mixed-Phase Clouds, and Sea Ice Emissivity over the Central Arctic Ocean) - Summer 2024

Ground based deployment at the Arctic research base **AWIPEV** in Ny-Ålesund

COMPEX airborne campaign over the Fram strait - Spring 2026

Soon to be submitted to AMT: Look out for S. Schnitt et al. and GRaWAC

contact: s.schnitt@uni-koeln.de