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1. Climate model/ calibration 2. Framework

0x
Climate model = a software —=D(x) + z P,(x,4,)
+ external forcings Jdt
+ horizontal/vertical grids
+ a scientific content (i.e., fluid dynamics equations, parameterizations)
+ values for model internal/uncertain parameters >> calibration

Calibration (or tuning)
« Common to most modelling frameworks
« Can be seen as an optimisation procedure under constraints (or metrics), possibly with priorities.
* Need for high-quality references/observations, with well-quantified uncertainties
« Typically, +1 W m-2 at TOA ~ +0.5—-1.5 K of global mean near-surface temperature
» Given current uncertainties, present-day global-mean temperature in a climate model is
mostly a result of tuning.

A bottleneck for climate model development
* High dimensionality of the parameter space ~0O(10)
« Climate model numerical simulations are computationally expensive
» An exhaustive exploration of the parameter space is not directly possible.
« Large number and variety of metrics O(10-100++) , sometimes subjective

. Define targeted (scalar) metrics f, their reference values ry and associated uncertainties oy r
ii. ldentify the relevant model parameters A, and their “acceptable” range >> input parameter space A
— iii. Define a simulation strategy, build an experimental design, run simulations >> learning dataset
Iv. Emulate f(A) for each metric (Gaussian Processes)
v. ldentify the sub-space of A which is compatible with references for all metrics
>> Not-Ruled-Out-Yet — NROY — space

considering Ir(\) = ry —E[f(A)]]

* The reference uncertainty 2 9 v I
« The emulator uncertainty \/U'r,f +og s+ Var [f(A)

 The model structural error (tolerance to error) o, ¢ ,
>> Implausibility measure Iz, cutoff T NROYf ={Al1 f(l) <T}

NROY' = ANROY; = {4 | I;(4) < T,forall f}
f

* Overfitting issue, treatment of uncertainties

Calibration of CNRM-CM6-1 (Voldoire et al. 2019, Roehrig et al. 2020)

« Manual calibration, 1 or 2 parameters at the same time, mixing well-defined metrics and more
subjective considerations

« Calibration of stand-alone components before coupling, priorities among metrics
« Often questioning the model physical content. But difficult to disentangle true model structural
limits from “just” a poor calibration?

3. Toward a new calibration of CNRM-CM6-1

Global LW CRE at TOA  Ocean net energy flux : e
T % NROY?® density within input parameter space

For some of the dominant parameters
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Unfortunately, none of Wave 1-8 simulations fulfils all the metrics ol GCVRE | i
- Convergence is not yet achieved

« Appropriate sampling of small NROY spaces is difficult and requires further work

« Some tolerances to error are likely too weak and require to be revisited.
Nevertheless

« A few simulations fulfil all the metrics but one (for a cutoff of 3)
« Afew have interestingly low RMSEs for targeted variables

[w

- N w

0.5 1.0

RSWINHF_LIQ

0.6 0.8 1.0

References

Couvreux et al. 2021: Process-based climate model development harnessing machine learning: 1. A calibration tool for parameterization improvement. JAMES, doi: 10.1029/2020MS002217
Hourdin et al., 2020: Process-based climate model development harnessing machine learning: 2. Model calibration from single column to global. JAMES, doi: 10.1029/2020MS002225

Roehrig et al., 2020: The CNRM Global Atmosphere Model ARPEGE-Climat 6.3: Description and Evaluation.

Voldoire et al., 2019: Evaluation of CMIP6 DECK Experiments With CNRM-CM®6-1. JAMES, doi: 10.1029/2019MS001683.

— vi. Iterate over several waves to reduce the emulators’ uncertainty in NROYN-1, until convergence

Couvreux et al. (2020), Hourdin et al. (2020) and reference therein

CRE at TOA
SW LW

c) BIAS: -3.6, RMSE: 13 3 d) BIAS: -3.6, RMSE 6 3
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. to quantify the CNRM-CM6-1 climate model parametric and structural errors

Global averages of the energy budget components
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at TOA: OLR, OSR, Net, SW/LW CRE / at the surface ocean: Net, SWdn, LWdn

Values from CERES-EBAF, uncertainties based on the literature

Except Net at surface/TOA =0 +/- 0.1 W m: the model has to be equilibrated.

Tolerance to error: 0.5 W m-
Zonally average profiles of SW/LW CRE + Temperature at 200 hPa

SW/LW CRE: CERES-EBAF with uncertainty of 2 W m-2, tol. of 1 W m-
T200: based on ERA5/JRA55/MERRA/CFSR ensemble mean and std, tol. 1.5 K

Regional and seasonal averages of SW/LW CRE and precipitation

SW/LW CRE: CERES-EBAF, uncertainty of 2 W m-, tolerance of 5 W m-2
Precipitation. MSWEP/GPCP/TRMM 3B42 ensemble mean and std, tol.

between 0.5 and 1 mm day’

>> 63 metrics

7 from turbulence (TKE scheme + PBL-top entrainment)

ANNUAL

LW CRE

ANNUAL

16 from microphysics (1-moment, 5 hydrometeors)

19 from the unified dry, shallow and deep convection scheme

4 from cloud radiative properties (heterogeneity)

1-year sstclim simulations + 3-month spin-up
sstclim vs amip correction of the reference target
Consideration of internal variability uncertainty based on a 100-year sstclim

simulation with CNRM-CM6-1.

Latin Hypercube sampling for 1st wave

4 Conclusions

> A better calibration of CNRM-CM6 can be achieved

« Several mean state features are improved or of similar quality

« Some errors truly structural: clouds/radiation over eastern part of ocean basins, upper-
tropospheric temperatures

5o « Some trade-offs are required
30 > History matching with iterative refocussing

- 10 * Provides a relevant and efficient framework for model calibration in the presence of
uncertainties

Can help accelerate model development by comparing calibrated model version

Relative score within the CMIPS ensemble > Assessing the true added value of a new development

CNRM-CM6-1 Helps better identify and quantify model structural errors, and thereby helps focus on bias
understanding/model development

* Overall questions the scientific content of a climate model

i Next steps
Play with tolerances to error to better identify/quantify model structural errors and trade-offs

Interesting configurations
sampled across the waves

Add new metrics, e.g., variability: can we get both mean state and variability right?
RMSE —RMSE o gian | = Pre-conditioning with cheaper model configurations, e.g., 1D/LES for preserving process-level
S T T RMSE pegian performance (Couvreux et al. 2020, Hourdin et al. 2020).
A~ ﬁ | | | | | m Towards calibration of ocean-atmosphere coupled configurations
20 —0.40 —0.30 —0.20 —0.10 —0.05 0.00 0.05 0.10 0.20 0.30 0.40 Develop physical interpretations of what is happening in the calibration process.
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