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4. Conclusions

2. Framework

3. Toward a new calibration of CNRM-CM6-1

i. Define targeted (scalar) metrics 𝑓, their reference values 𝑟!	and associated uncertainties 𝜎",!
ii. Identify the relevant model parameters 𝝀, and their “acceptable” range >> input parameter space Λ
iii. Define a simulation strategy, build an experimental design, run simulations >> learning dataset
iv. Emulate 𝑓(𝝀) for each metric (Gaussian Processes)
v. Identify the sub-space of Λ which is compatible with references for all metrics

>> Not-Ruled-Out-Yet – NROY – space
considering
• The reference uncertainty 
• The emulator uncertainty
• The model structural error (tolerance to error) 𝜎$,!

>> Implausibility measure 𝐼!, cutoff 𝑇

vi. Iterate over several waves to reduce the emulators’ uncertainty in NROYN-1, until convergence  

i. 3 classes of metrics 
• Global averages of the energy budget components

• at TOA: OLR, OSR, Net, SW/LW CRE / at the surface ocean: Net, SWdn, LWdn
• Values from CERES-EBAF, uncertainties based on the literature
• Except Net at surface/TOA = 0 +/- 0.1 W m-2 : the model has to be equilibrated.
• Tolerance to error: 0.5 W m-2

• Zonally average profiles of SW/LW CRE + Temperature at 200 hPa
• SW/LW CRE: CERES-EBAF with uncertainty of 2 W m-2 , tol. of 1 W m-2

• T200: based on ERA5/JRA55/MERRA/CFSR ensemble mean and std, tol. 1.5 K
• Regional and seasonal averages of SW/LW CRE and precipitation

• SW/LW CRE: CERES-EBAF, uncertainty of 2 W m-2, tolerance of 5 W m-2

• Precipitation: MSWEP/GPCP/TRMM 3B42 ensemble mean and std, tol. 
between 0.5 and 1 mm day-1

>> 63 metrics

ii. 46 parameters
• 7 from turbulence (TKE scheme + PBL-top entrainment)
• 16 from microphysics (1-moment, 5 hydrometeors)
• 19 from the unified dry, shallow and deep convection scheme
• 4 from cloud radiative properties (heterogeneity)

iii. Waves of 400 simulations
• 1-year sstclim simulations + 3-month spin-up
• sstclim vs amip correction of the reference target
• Consideration of internal variability uncertainty based on a 100-year sstclim

simulation with CNRM-CM6-1.
• Latin Hypercube sampling for 1st wave

C
N

R
M

-C
M

6-
1

W
8_

r1
47

W8_r147

W8_r147

CRE at TOA
SW LW

Climate model = a software
+ external forcings
+ horizontal/vertical grids
+ a scientific content (i.e., fluid dynamics equations, parameterizations)
+ values for model internal/uncertain parameters >> calibration

Calibration (or tuning)
• Common to most modelling frameworks
• Can be seen as an optimisation procedure under constraints (or metrics), possibly with priorities.
• Need for high-quality references/observations, with well-quantified uncertainties
• Typically, +1 W m-2 at TOA ~ +0.5–1.5 K of global mean near-surface temperature

Ø Given current uncertainties, present-day global-mean temperature in a climate model is 
mostly a result of tuning.

A bottleneck for climate model development
• High dimensionality of the parameter space ~O(10)
• Climate model numerical simulations are computationally expensive

Ø An exhaustive exploration of the parameter space is not directly possible.
• Large number and variety of metrics O(10-100++) , sometimes subjective
• Overfitting issue, treatment of uncertainties

Calibration of CNRM-CM6-1 (Voldoire et al. 2019, Roehrig et al. 2020)
• Manual calibration, 1 or 2 parameters at the same time, mixing well-defined metrics and more 

subjective considerations
• Calibration of stand-alone components before coupling, priorities among metrics
• Often questioning the model physical content. But difficult to disentangle true model structural 

limits from “just” a poor calibration?

W8_r147

psl tas pr clt rsut rsutcs rlut rlutcsua850ua200va850va200zg500ta200

TUNARP-V642-W6-r291-amip
TUNARP-V642-W7-r047-amip
TUNARP-V642-W7-r068-amip
TUNARP-V642-W7-r304-amip
TUNARP-V642-W8-r175-amip
TUNARP-V642-W8-r282-amip
TUNARP-V642-W8-r296-amip
TUNARP-V642-W8-r283-amip
TUNARP-V642-W8-r066-amip
TUNARP-V642-W9-r004-amip
TUNARP-V642-W9-r293-amip
TUNARP-V642-W9-r147-amip
TUNARP-V642-W9-r282-amip
TUNARP-V642-W9-r323-amip
TUNARP-V642-W9-r240-amip

CNRM-CM6-1
CNRM-CM5.1

NorESM1-M
MRI-CGCM3

MRI-AGCM3-2S
MRI-AGCM3-2H

MPI-ESM-MR
MPI-ESM-LR

MIROC5
MIROC-ESM

IPSL-CM5B-LR
IPSL-CM5A-MR
IPSL-CM5A-LR

inmcm4
HadGEM2-A

GISS-E2-R
GFDL-HIRAM-C360
GFDL-HIRAM-C180

GFDL-CM3
FGOALS-s2
FGOALS-g2
EC-EARTH

CSIRO-Mk3-6-0
CMCC-CM

CCSM4
CanAM4

BNU-ESM
bcc-csm1-1-m

bcc-csm1-1
ACCESS1-3
ACCESS1-0

°0.40 °0.30 °0.20 °0.10 °0.05 0.00 0.05 0.10 0.20 0.30 0.40

DJF
MAM

JJA
SON

Interesting configurations 
sampled across the waves
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Relative score within the CMIP5 ensemble

score	=
RMSE	−RMSEmedian

RMSEmedian

Unfortunately, none of Wave 1-8 simulations fulfils all the metrics
• Convergence is not yet achieved
• Appropriate sampling of small NROY spaces is difficult and requires further work
• Some tolerances to error are likely too weak and require to be revisited.

Nevertheless
• A few simulations fulfil all the metrics but one (for a cutoff of 3)
• A few have interestingly low RMSEs for targeted variables

Ø A better calibration of CNRM-CM6 can be achieved
• Several mean state features are improved or of similar quality
• Some errors truly structural: clouds/radiation over eastern part of ocean basins, upper-

tropospheric temperatures
• Some trade-offs are required 

Ø History matching with iterative refocussing 
• Provides a relevant and efficient framework for model calibration in the presence of 

uncertainties
• Can help accelerate model development by comparing calibrated model version

Ø Assessing the true added value of a new development
• Helps better identify and quantify model structural errors, and thereby helps focus on bias 

understanding/model development
• Overall questions the scientific content of a climate model

Ø Next steps
• Play with tolerances to error to better identify/quantify model structural errors and trade-offs
• Add new metrics, e.g., variability: can we get both mean state and variability right?
• Pre-conditioning with cheaper model configurations, e.g., 1D/LES for preserving  process-level 

performance (Couvreux et al. 2020, Hourdin et al. 2020).
• Towards calibration of ocean-atmosphere coupled configurations
• Develop physical interpretations of what is happening in the calibration process.

Couvreux et al. (2020), Hourdin et al. (2020) and reference therein
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