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(Kim et al., 2003, Atm-Ocn.)
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A WACCM simulation illustrating how gravity waves kicked off by a cyclone building
GQ’DDARD up into pan-global perturbation as they travel toward space (Liu et al., 2014, GRL).
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Aqua AIRS (2002.08 - now)

* Global warming --> poleward e * Can we see any GW fingerprints
shift of jets and enhancement of of response?
tropical convection — ¢ Are these two satellite records
* Ozone recovery --> strengthening good enough for GW trend
of stratosphere polar-night jet study?
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(Gong, Wu and Eckermann, 2012) (Wu and Eckermann, 2008)
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_ Opoise timeseries: instrument anomalies and

- degradation
Aqua-AIRS (deseasonalized)
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Major instrument recalibration events
(Credit: Denis Elliott)
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g o O pise limeseries: instrument anomalies and

- degradation

Aura-MLS (de-seasonalized)

De—Seasonalized (A+D)/2, ht=24.3 km, colors x 0.0032 (K*), GW Variance
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D ARD ; tlmegerﬁffgctlve way to remove the Jumps and W
=5 d@rngon effect -

Aqua-AIRS (deseasonalized)
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By Major Interanpual Variabilities Impacting the
GQ)D“QA'%*‘”?‘ Stratosphere " g

2010 2015

Multivariate ENSO Index 4
=ay *QBO +a, * ENSO
+ az *Solar +a, *t

Solar Flux (10.7 cm)
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Lower §tratosphere Cloud Perturbatlon
Negatlve Trend ™
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Conclusion #1: cloud variability near tropopause decreasing > more large-scale convections?
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Upper St!atosphere Positive GW Trend =~
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Conclusion #2: GW variability in upper stratosphere increases, especially at polar
regions =2 ozone recovery induced stronger polar-night jet?
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* AqQua-AlIRS and Aura-MLS had flown for 22+ and 20+ years and had started to drift
orbit and entering their final stages. Now it's the time to study various trends.

* Atmospheric gravity waves (GWs) are small-scale perturbations that can be revealed
from radiance (or brightness temperature) perturbations in satellite imageries if the
satellite noise is small. Because of excellent instrument performance and superb
calibration, AIRS and MLS are widely used for studying and monitoring GWs in the
community.

* Due to instrument operation change and degradation over the years, it's easy to get
artificial positive trends for GWs if these instrument effects are not carefully removed.

 After removing the instrument effects, and removing the variabilities associated with
interannual forcings (QBO, ENSO and Solar), we derive negative trends near the
tropopause (dominated by cloud variabilities) and positive trends in the upper
stratosphere in both AIRS and MLS measurements.

* The causes of the trends need to be further investigated.
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