Climate Sensitivity controls global precipitation hysteresis in a changing CO₂ pathway

Sang-Wook Yeh, Se-Yong Song Hanyang University, ERICA, South Korea, UC Santa-baraba, USA

IPCC AR6 Synthesis Report

Limiting warming to 1.5°C and 2°C involves rapid, deep and in most cases immediate greenhouse gas emission reductions

- Implemented policies result in projected emissions that lead to warming of 3.2°C, with a range of 2.2°C to 3.5°C (medium confidence)

Implemented policies (median, with percentiles 25-75% and 5-95%)

Limit warming to 2°C (>67%)

- Limit warming to 1.5°C (>50%) with no or limited overshoot
- Past emissions (2000–2015)

Model range for 2015 emissions

Past GHG emissions and uncertainty for 2015 and 2019 (dot indicates the median)

Carbon Dioxide Removal (CDR) scenario

CMIP6 Carbon Dioxide Removal Model Intercomparison Project (CDRMIP) – To explore the potential impacts of CDR on the climate system

IPCC AR6 Chapter 4

What causes such an inter-model diversity in precipitation changes in response to varying CO₂ concentrations?

Climate sensitivity in each climate model controls global precipitation hysteresis in a changing CO₂ pathway

Equilibrium Climate sensitivity (ECS)

- Earth's energy budget $\Delta N = \Delta F + \lambda \Delta T$

High Climate Sensitivity Model

Strong negative climate feedback parameter

(= Less warming is required to restore

the climate system to equilibrium)

High Climate Sensitivity

Low Climate Sensitivity Model

ECS from eight CMIP6 CDRMIP ESMs

Model	ERF (W m ⁻²)	λ(W m ⁻² K ⁻¹)	ECS (°C
anESM5	3.62	-0.64	5.63
SM1-0-LL	3.63	-0.68	5.34
CESM2	3.23	-0.62	5.18
M-ESM2-1	2.99	-0.63	4.76
SS-ESM1-5	2.84	-0.73	3.87
OC-ES2L	4.05	-1.51	2.68
DL-ESM4	3.92	-1.50	2.62
ESM2-LM	3.50	-1.38	2.54
ti-model verage	3.47	-0.96	4.08

CDRMIP ECS and Global warming hysteresis

CDRMIP ECS is a key factor controlling the global precipitation hysteresis

Higher ECS with a larger ΔT hysteresis simulate a greater degree of ΔP hysteresis

How does ECS control ΔP hysteresis?

Surface energy balance constraints on global precipitation

- Surface energy balance constraints
 - $L_{v}\Delta P = \Delta SW + \Delta LW \Delta SH \Delta N$

(surface available energy for precipitation)

Surface energy budget response during ramp-up (1–139 yrs) & -down (141–279 yrs)

CDRMIP Asymmetrical response of the surface energy budget terms

Surface energy budget response during ramp-up (1-139 yrs) & -down (141-279 yrs)

CDRMIP Asymmetrical response of the surface energy budget terms

Surface energy budget response during ramp-up (1–139 yrs) & -down (141–279 yrs)

CDRMIP Asymmetrical response of the surface energy budget terms

Surface energy budget response during ramp-up (1-139 yrs) & -down (141-279 yrs)

Surface energy budget response during ramp-up (1-139 yrs) & -down (141-279 yrs)

Asymmetrical response of ΔLW and ΔN in High ECS models account for 44% and 31% of the global ΔP hysteresis, respectively.

CDRMIP Higher ECS simulate a larger asymmetric water vapor feedback response

Where the asymmetric response of ALW in High and Low ECS climate models comes from ?

ΔLW – water vapor feedback

Atmospheric water vapor content response (ΔWVC)

Summary

Thank you