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Ⅲ． Construction of 
real-time data check system

 Two years ago, we constructed a real-time anomaly 
detection system hosted on a cloud server in a data 
center.

 Today, data inspectors in 24-hour monitoring offices 
utilize this system to identify and correct irregular 
data.

 This has significantly enhanced the precision and 
efficiency of our operations.

 We aim to further increase the accuracy 
by implementing an AI model using deep 
learning technology, specifically an LSTM-
Encoder Decoder.

 Our prototype model has shown 
promising results, but we need to 
enhance its accuracy by training it with a 
larger dataset from across Japan.
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Ⅱ．Concept of 
anomaly detection models

 At first, we devised two types of anomaly detection model to 
compere with neighboring station data.

A) Deviation <3σ> model
B) Regression <VAR> model

 When compared with C) Existing difference model 
(comparison with previous data from the same station) , 
both models showed a significantly better precision ratio.

 A) Deviation <3σ> model recorded highest Precision ratio. 
Therefore, we adopted this model as a real-time check 
system for the monitoring offices.

observatory b
<comparison point> B) Regression <VAR> model 

Verification
Result of checking some representative observation data during one rainy season

  Precision rate : P=TP/(TP+FP)
A) Deviation <3σ> model    P = 0.60
B) Regression <VAR> model   P = 0.40
C) Existing differential model   P = 0.21

Classification
Predicted

outlier normal

Actual
outlier TP FN
normal FP TN

A) Deviation
<3σ> model

Predicted
outlier normal

Actual outlier 6 0
normal 4 20

B) Regression
<VAR> model

Predicted
outlier normal

Actual outlier 6 0
normal 9 15

C) Existing 
difference model

Predicted
outlier normal

Actual outlier 6 0
normal 22 2

Observatory b

Observatory c
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regression formula
Ha=α + β･Hb + γ･Hc

α,β,γ：coefficient automatically
calculated

from past 2hours data
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To compare with data of upstream observatory (Hb, Hc),
 estimated value Ha is automatically estimated from regression formula
 for each 10minutes < consider delay time Δtb,c＞
When the new data Ha deviate from estimated value, flag is automatically set for warning
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A) Deviation <3σ> model Water depth data of past 2 hours 
for each 10minutes
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According to normal distribution, 
99.7% of data between mean value±3σ

𝑥̅𝑥

：number of data
：water depth
：mean value

calculate σ
(standard deviation) 

automatically

10 minutes

Anomaly flag

When the new data deviate
from the previous data±3σ , 
flag is automatically set for warning
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Ⅰ．Water level observation
& data information system

 In Japan, river water levels are observed at over 14,000 points
 Real-time data from these stations are integrated into the information 

system and delivered on web sites
 However, water gauges often produce irregular data, so, we need a precise

data verification system at the monitoring station
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After a flood , water gauges are prone to damage, such as sediment deposits

Observation
Station

River information web site  https://www.river.go.jp/
< Ministry of Land, Infrastructure, Transport and Tourism>

 We have tested the AI 
model using over 50 
flood data series.

 anormal data exceed 
threshold level★
★minimize F=2*P*R/(P+R)

Precision: P=TP/(TP+FP)
Recall   :    R=TP/(TP+FN)
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