Soil Moisture Dominates the Land Surface Feedback in Compound Drought-Heat Extremes in Tropical South America
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response to soil moisture anomalies. Elevated initial soil temperature
or reduced 1nitial soil moisture tends to yield warmer and drier
conditions and increase the occurrence of both drought and heat
extremes, with stronger and longer-lasting responses to soil moisture
anomalies (than soil temperature anomalies). The simulated
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day when turbulence 1s strong and 1s negligible at night due to the stable boundary layer.
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