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Background

e Precipitation extremes increase when convection is more organized (simulations & observations)

e Mesoscale convective organization not properly represented in GCMs

e Convection self-aggregates in radiative-convective equilibrium (RCE) experiments devoid of
external forcings

e (enerally mechanism: physical processes that generate a shallow circulation leading to an
upgradient transport of MSE from dry to moist region

e Radiative feedback crucial

e Intriguingly, self-aggregation can also occur without radiative feedback if rain evaporation is
removed in the boundary layer (Muller & Bony, 2015; Holloway & Woolnough, 2016)

o “moisture-memory aggregation”
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Background

e Are cold pools causing this phenomenon?
o Cold pools hinder aggregation by increasing mixing between dry and moist areas in the PBL
o Removing rain evaporation removes cold pools = aggregation (Jeevanjee & Romps, 2013)
e No clear consensus
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Research questions

e How does convective organization change when rain evaporation is removed or reduced in the
PBL?
e Which physical processes are involved in the development of this type of organization?
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Methods

3D RCE simulations in SAM

Domain size [ =128 km, Ax = 1km

Horizontally homogenized radiation and surface fluxes
Ocean surface, SST = 301 K

Progressively reduce rain evaporation in lowest 1 km by multiplying 0, ovap with a factor
a=[1,08,0.6,04 02 0]
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Aggregation (precipitable water)
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Aggregation (precipitable water)

a=1
45
100 40
S
X 35
> 50
30
25

0 50 100
x [km]

Yi-Ling Hwong, GEWEX OSC, 8 July 2024

PW [mm]



Aggregation (precipitable water)
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Aggregation (precipitable water)

a=1

Intriguingly ...
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Cold pools?
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Do not have cold pools, but
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Shallow circulation

e Radiatively-driven aggregation (i.e., with interactive radiation) is driven by a shallow circulation
that transports MSE upgradient
o differential radiative cooling = dry region gets drier = dry region expands = aggregation
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Shallow circulation

e Radiatively-driven aggregation (i.e., with interactive radiation) is driven by a shallow circulation
that transports MSE upgradient
o differential radiative cooling = dry region gets drier = dry region expands = aggregation
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In our case radiation is horizontally homogenized, is this shallow circulation still present?
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Yesitis ..
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Yesitis ..
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What is driving this shallow circulation, if not radiation?
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Buoyancy

o High surface pressure (P ) anomaly of dry region builds up a divergent flow that drives the
shallow circulation required for aggregation to occur (Yang, 2018; Shamekh et al., 2020)
e Assuming weak temperature gradient in the FT, P, anomaly is related to the boundary layer

buoyancy (density) anomaly (Yang, 2018):

0, 9’ eq’
ol

0,, 1+€q
Temperature Moisture
contribution contribution
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Buoyancy

e Reducing rain evaporation:
o reduce evaporative cooling (net heating effect)
o reduce evaporative moistening (net drying effect)
e Two opposing buoyancy effects, which one plays a dominant role in self-aggregation?
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Buoyancy (6 )
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- Aggregation index
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- Aggregation index
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Convective heating of moist patch
triggers aggregation

l

Dry subsidence intrusion into PBL of
dry region intensifies aggregation

l

Competing Tand g, effects in mature
phase of aggregation

l

Very small o required (almost total
rain evap. removal)
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Convective heating of moist patch
triggers aggregation

l

Dry subsidence intrusion into PBL of
dry region intensifies aggregation

l

Competing Tand g, effects in mature
phase of aggregation

l

Very small o required (almost total
rain evap. removal)

Moisture-memory aggregation = convectively-driven aggregation?
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Convective heating of moist patch
triggers aggregation

l

Dry subsidence intrusion into PBL of
dry region intensifies aggregation

l

Competing Tand g, effects in mature
phase of aggregation

l

Very small o required (almost total
rain evap. removal)

Moisture-memory aggregation = convectively-driven aggregation?

How is it different from radiatively-driven aggregation?
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Convectively-driven agg (CDA)
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Summary
Convectively-Driven Aggregation (CDA)

Convective heating of moist patch triggers aggregation

Dry subsidence (virtual effect) intrusion into PBL of dry patch
intensifies aggregation

Moist and dry patches work in tandem
Aggregation occurs quickly

T'and g, effects oppose each other in mature phase

Radiatively-Driven Aggregation (RDA)

Radiative cooling of dry patch is the first-mover of aggregation

Dry subsidence (virtual effect) intrusion into PBL of dry patch
intensifies aggregation

Dry patch driven
Aggregation occurs slowly

T'and g, effects work together in mature phase
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Summary
Convectively-Driven Aggregation (CDA) Radiatively-Driven Aggregation (RDA)

Convective heating of moist patch triggers aggregation Radiative cooling of dry patch is the first-mover of aggregation

Dry subsidence (virtual effect) intrusion into PBL of dry patch | Dry subsidence (virtual effect) intrusion into PBL of dry patch

intensifies aggregation intensifies aggregation
Moist and dry patches work in tandem Dry patch driven
Aggregation occurs quickly Aggregation occurs slowly
T'and g, effects oppose each other in mature phase T'and g, effects work together in mature phase

S

(almost) total rain evaporation removal needed as ignition during triggering phase,

and to counter the opposing T'and g, effects in mature phase -



Thank you!
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Key Points:

e When rain evaporation is removed in
the PBL, convective self-aggregation
(CSA) is triggered by convective
heating of the moist regions

e Surprisingly, CSA only occurs when
rain evaporation is almost totally
removed in the PBL, due to opposing
temperature and moisture effects

e CSA occurs more easily in a larger
domain due to stronger radiatively
induced subsidence, while cold pools
play a less significant role
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Abstract The elimination of rain evaporation in the planetary boundary layer (PBL) has been found to lead
to convective self-aggregation (CSA) even without radiative feedback, but the precise mechanisms underlying
this phenomenon remain unclear. We conducted cloud-resolving simulations with two domain sizes and
progressively reduced rain evaporation in the PBL. Surprisingly, CSA only occurred when rain evaporation was
almost completely removed. The additional convective heating resulting from the reduction of evaporative
cooling in the moist patch was found to be the trigger, thereafter a dry subsidence intrusion into the PBL in the
dry patch takes over and sets CSA in motion. Temperature and moisture anomalies oppose each other in their
buoyancy effects, hence explaining the need for almost total rain evaporation removal. We also found radiative
cooling and not cold pools to be the leading cause for the comparative ease of CSA to take place in the larger
domain.

Plain Language Summary Convective clouds are not randomly scattered across the sky but tend to
clump together, a phenomenon known as convective self-aggregation (CSA). The interaction between clouds
and radiation is a key h for CSA to occur. Curiously, CSA can still take place without this radiative
feedback, provided that rain is prohibited from evaporating in the lowest layers of the atmosphere (~1 km),
called the planetary boundary layer (PBL). To investigate the physical processes behind this type of CSA (no-
evaporation CSA, or “NE-CSA”), we ran high resolution atmospheric model simulations and reduced rain
evaporation in steps in the PBL. We found that the additional heat resulting from the reduction of evaporative
cooling is crucial in triggering NE-CSA, thereafter the invasion of dry air into the PBL in the dry region takes
over and intensifies aggregation. Surprisingly, allowing even a minuscule amount of rain to evaporate prevents
NE-CSA from taking place. This is because removing rain evaporation has two opposing effects on convection:
heating and drying. The former aids convection while the latter hinders it. Only when rain evaporation is almost
completely eliminated can the heating effect be powerful enough to overcome the drying effect and kick-start
NE-CSA.
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