
Ensemble-based reanalysis of the terrestrial cryosphere
Kristoffer Aalstad1, Researcher, Dept. Geosci., Uni. Oslo, kristaal@geo.uio.no

R. Hock1, M. Mazzolini1, N. Pirk1, D. Treichler1, S. Westermann1, Y. A. Yılmaz1 J. Fiddes2 (SLF), E. Alonso-González3 (IPE)



Terrestrial cryosphere: Glaciers (white) and permafrost (invisible)
in cold regions at high latitudes and/or elevations

August 2004 MODIS True Color Composite (NASA Blue Marble)



Terrestrial cryosphere: Glaciers, permafrost, and seasonal snow

January 2004 MODIS True Color Composite (NASA Blue Marble)



Why we are interested in the cryosphere?

January 2004 MODIS True Color Composite (NASA Blue Marble)



Geoscientifically: Energy (albedo, latent heat, insulation), water (storage,
runoff, sea level), and carbon (permafrost, vegetation) cycle

January 2004 MODIS True Color Composite (NASA Blue Marble)



Socioeconomically: Climate services, water, recreation, hazards. . .

World population centers (>500 people km−2; CIESIN, 2017)



Figure: Snow, permafrost, and glaciers are essential climate variables (ESA Climate Change Initiative )



Working towards the long-term goal of generating hillslope-scale (100m),
daily, and multi-decadal estimates of the state of the global cryosphere

Figure: Example images showing the importance of the hillslope-scale in organizing the storage and fluxes
of water, energy, and carbon, across the terrain. Adapted from Fan et al. (2019)



Earth system modeling, especially NWP (see Miyamoto et al., 2013), has come a long
way, but multi-decadal subkilomter simulations are beyond the state-of-the-art.
Even if we could afford this, chaos needs to be tamed by observations.



A burgeoning zoo of emerging Earth observations. . .



Earth observation data can’t speak for itself
▶ Usually indirect.
▶ Gaps in space and time.
▶ Limited temporal coverage.
▶ Measurement uncertainty.
▶ Mismatch between measurement scale and process scale of interest.
▶ Often these data are already some form of retrieval.
▶ The future and most of the past is currently unobservable.

We always use models to represent and predict regularities in nature.
A separation of data and models is misleading since measurement
always involves some form of modeling (Parker, 2017).



A unifying perspective: Bayesian data assimilation (inversion)

y = G (x) + ε , (1)

▶ y: Observation vector
▶ x: Model state and/or parameter vector
▶ G: Data generating model of state dynamics and observables.
▶ ε: Observation error, also known as noise.

The inverse problem (solving for x) is always ill-posed, so we adopt a
probabilistic (Bayesian) perspective and infer the posterior distribution

p(x|y)︸ ︷︷ ︸
Posterior

∝
Likelihood︷ ︸︸ ︷
p(y|x) p(x)︸︷︷︸

Prior

(2)

by updating the prior (what we knew before conditioning on data) with the
likelihood (what the data tell us).



Algorithms for Bayesian DA (MacKay, 2003; Wikle et al., 2007; Murphy, 2023)

(A loose classification)

▶ Grid approximation†.
▶ Quadratic approximation

(Laplace’s method)†.
▶ Variational methods (4D-Var)†.
▶ Importance sampling (particle

filters/smoothers, GLUE).*
▶ Ensemble-based methods (EnKF

and smoothers)*.
▶ Approximate Bayesian

Computation (ABC)*.
▶ Markov chain Monte Carlo

(MCMC)*.
▶ Hybrid methods .

†: Deterministic methods.
*: Monte Carlo (ensemble) methods using (pseudo)
random number generators to sample distributions.

Figure: Ensemble model https://xkcd.com/1885/.

https://xkcd.com/1885/


Figure: Data assimilation is used operationally for climate reanalysis and NWP (source: ECMWF )



Operational cryospheric reanalyses with CryoGrid (Westermann et al., 2023)
in ESA Permafrost_cci



Seasonal snow reanalysis

Satellite retrievals︸ ︷︷ ︸
snow-covered area (fSCA), depth

= G(Snowpack state︸ ︷︷ ︸
SWE, fSCA, depth

) + ε



Figure: Workflow for the ensemble-based snow reanalysis method (Martinec and Rango, 1981; Kolberg and
Gottschalk, 2006; Margulis et al., 2015; Aalstad et al., 2018; Alonso-González et al., 2022).



Lakes basin snow reanalysis (30 km2, US Sierra Nevada)
▶ Assimilating fSCA retrievals from myriad optical

satellites (Landsat 7-8, Sentinel-2, Planet cubesats)
▶ Simple energy & mass balance snow model (Aalstad

et al., 2018) for 1 layer snowpack at 100 m res.
▶ Hybrid particle-ensemble smoother (Pirk et al., 2022).
▶ Forced by topographically-downscaled NLDAS.
▶ Validation with airborne snow observatory lidar.
▶ Comparing performance to existing regional (UCLA,

Spires-ParBal, UA), national (CONUS404, SNODAS,
NWM, NLDAS), and global (ERA5L) products.



Figure: Sentinel-2 10 m false color (left, snow is turquoise) and fSCA retrievals (right) over the Lakes basin.



Figure: Prior & posterior spread σ (col 1&2) and mean µ (col 3&4) SWE and ASO SWE (col 5) for 4 melt seasons (rows).



Figure: Basin-averaged time series of fractional snow-covered area (top, melt season only) and snow water
equivalent (bottom) showing the prior (red) and posterior (blue) mean (line) and spread (shading, ±5σ)
along with assimilated satellite data (dots) and independent airborne observations (triangles). Each
column is for one water year (WY), i.e. 1-Oct-[WY-1] to 30-Sep-WY, in the range 2016-2019.



Figure: Basin-average time series of the prior (thick red) and posterior (thick blue) mean SWE for 4 water
years in the range 2016-2019 as well as the corresponding estimates from several other regional, national,
and global products as well as the local station (MHP, gray) and the ASO ground truth (black diamond).



Figure: Scatter plot of all the basin-average SWE estimates from various products vs. the ASO SWE
ground truth (left) and the corresponding performance in terms of MAPE (0 is best) and R2 (1 is best) for
all products (right). Naive estimates from the local MHP station (gray star) with SWE MAPE of 60% are
worse than the prior. Three snow reanalysis methods (posterior, UCLA, SP) perform best.



Figure: Assimilating ICESat-2 snow depth & Sentinel-2 fSCA with MuSA (Mazzolini et al., 2024)



Figure: Snow depth results assimilating snow cover only (left) snow depth only (middle) and both snow
depth and snow cover (right). For each column the panels show the: catchment-average (0.5 km2) time
series (a), peak snow depth distribution posterior median estimates (b) and independent drone
observations (c), histograms of peak snow depth posterior median estimates (d) and drone observations (e).



Check out github.com/ealonsogzl/MuSA (Alonso-González et al., 2022), we
are continuously developing this toolbox and welcome new contributors!

https://github.com/ealonsogzl/MuSA


Figure: The ESA PATCHES project seeks to (1) fill gaps in montane SWE (lower) by assimilating snow
cover (top) in a snow reanalysis and (2) Extend the kilometer-scale snow cover record back to the 1980s by
sharpening AVHRR data using MODIS. More info: mn.uio.no/geo/english/research/projects/patches/

https://mn.uio.no/geo/english/research/projects/patches/


Figure: Examples of snow cover duration for the Alps from MODIS at 0.01◦(top left, WY2006) and
AVHRR (bottom left, WY1989). Corresponding Gaussian process 0.01◦ fusion of AVHRR & MODIS in
the right column. Only pixels falling within the Alps are shown for the MODIS and GP sharpened imagery.



Figure: Ongoing work testing a novel Gaussian process sharpening method over 8 large mountain ranges
and an Arctic archipelago, above is an example of sharpened 0.01◦ snow cover duration across the
Himalaya for water year 1989 (prior to the MODIS era). Currently no truly global kilometer scale snow
cover data exists prior to water year 2000 when Landsat obtained global coverage and MODIS was
launched. In the current first stage of PATCHES we are trying to help fill this gap.



Inspired by yukigata (Japanese: ‘snow picture’)
Repeated patterns in annual snow cover dynamics are key to snow cover sharpening and reanalysis methods.

Figure: Mt. of the Holy Cross (CO, USA) in 1873 (left) and 2004 (right) from Sturm and Wagner (2010).



Glacier reanalysis

Glacier observations︸ ︷︷ ︸
balances, snowlines, albedo. . .

= G(Glacier state︸ ︷︷ ︸
mass,volume. . .

) + ε



Past and Future High-resolution Global Glacier Mass Changes (GLACMASS):
mn.uio.no/geo/english/research/projects/glacmass/
▶ ERC Advanced Grant (Oct 2023 - Oct 2028). PI: Regine Hock (Uni. Oslo, UAF)
▶ Goal: Reconstruct and project the mass balance of all >200 000 glaciers on Earth.
▶ Method: Synthesizing emerging glacier observations by combining DA and machine

learning with the Python Glacier Evolution Model (PyGEM, Rounce et al., 2023).

Figure: Global glacier mass-change estimates from Hock and Huss (2021).

https://mn.uio.no/geo/english/research/projects/glacmass/




Figure: Combining DA and machine learning, in GLACMASS we will explore the value of emerging Earth
observations for constraining glacier evolution models. This figure shows glacier albedo (dark blue: low,
light blue: high) over the Brøgger peninsula retrieved using a novel Bayesian spectral unmixing approach
on Sentinel-2 data, and the corresponding snow lines (red) estimated from these albedo retrievals.



Proof-of-concept glacier reanalysis
▶ Assimilating in-situ mass balance in PyGEM-lite.
▶ Hybrid particle-ensemble smoother.
▶ Forced by topographically downscaled ERA5 data.
▶ Rembesdalskåka glacier, Hardangerjøkulen, Norway.

Photo: H. Elvehøy, (NVE)



Figure: Glacier mass balance reanalysis for Rembesdalskåka in Norway for (a) the entire 41-year period,
and (b) a subset for 2001-2010, showing the prior (red) and the posterior (blue) after having assimilated the
mass balance observations (yellow dots). Solid lines indicate the ensemble median while the shading shows
the 90th percentile range of the ensemble. The parameters in each water year are updated independently
(no pooling), and the prior states are initialized using the last step of the posterior from the previous
year. We updated 3 uncertain parameters: degree-day factor, a snowfall correction, and air temperature
bias. The observations were provided by the Norwegian Water Resources and Energy Directorate (NVE).



Figure: Panel (a) on the left is the same as the last figure with no pooling, but panel (b) is with
dynamical pooling (i.e. filtering) where the parameter posterior of the current water year becomes the
parameter prior for the next water year. In this case, dynamical pooling does not work very well, and
neither does batch pooling (not shown) where static parameters are updated using all observations.



Figure: Between the two extremes of no pooling and complete pooling, we have partial pooling using
hierarchical Bayesian inference where we define a so-called hyperprior and infer hyperparameters
(parameters controlling parameters). Our new hierarchical smoother reanalysis method (work in
progress) appears to work much better and is less sensitive to temporal (and likely spatial) data gaps.



Some of our recent uses of data assimilation (DA) in GEWEX problems
▶ Satellite (MODIS & Sentinel-2) snow cover DA (Aalstad et al., 2018).
▶ High res MODIS snow cover DA with clustering (Fiddes et al., 2019).
▶ MODIS snow cover DA in FSM-ICAR (Alonso-González et al., 2021).
▶ Multiple snow DA system (MuSA) (Alonso-González et al., 2022).
▶ High res spatio-temporal snow DA (Alonso-González et al., 2023).
▶ Spatio-temporal ICESat-2 snow depth DA (Mazzolini et al., 2024).
▶ Snow reanalysis using DA and deep learning (Guidicelli et al., 2023).
▶ Drone DA for flux inversion in large eddy simulations (Pirk et al., 2022).
▶ Guiding drones by flux information gain (van Hove et al., 2023, 2024).
▶ Inferring carbon fluxes with Bayesian deep learning (Pirk et al., 2024).



Funding: PATCHES (ESA fellowship), Permafrost_cci (ESA), GLACMASS (ERC), Spot-On (RCN), SNOWDEPTH (RCN)

Thanks, questions?
Photo: Mount Aka, Daisetsu mountains, Hokkaido (29.06.2017, by K. Aalstad)
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