Impact Of Cloud Microphysics Parameterization On Simulating The Extreme Rainfall Conditions

Over Central Himalaya Using WRF Modeling System

Rajendra Singh Rawat¹, Piyush Srivastava¹ and Sandipan Mukherjee²

¹Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Uttarakhand, India ²Ladakh Regional Centre, GB Pant National Institute of Himalayan Environment, Leh, Ladakh(UT), India

Introduction

According to a study (Nandargi et al., 2016) of over 100 years of extreme rainfall events and severe rainstorms in Uttarakhand, October has the highest frequency of extreme 1-day rainfall (>100 mm), with higher altitude stations also experiencing extreme rainfall. According to research on extreme rainstorms in the Northwest Himalayas from 1875-2010 (Nandargi, S. & Dhar, 2012), one of the five most severe storms happened in October, while the other four occurred in the second half of September in the region. This study investigated the microphysical processes of extreme rainfall for the verification of the WRF model simulation and a statistical analysis of observed data using MRR was carried out for the extreme rainfall event of 17-19th October 2021 over Almora, Uttarakhand, India.

Study Area and Methodology

Observation Data Analysis

₩ 77.0°E 7	8.0°E	79.0°E	80.0°E	81.0°E	82.0°E	28
Table-1: Domain configuration used in WRF Model						
Model des	n	Detail				
WRF-A		Version-4.3.1				
No of do	main			3		
Centre of sin	mulatio	on	29.639	N,79.624	E	
Spatial res	1	9, 3, 1 km				
Time S		24 sec				
Initial and b condit	oundation	ry Fi	nal analy from N	sis data (CEP, US	FNL) A	
Model initia	ite 2	15/10/2021 00:00 to 21/10/2021 00:00 UTC				
Project		Mercator				

	76°E	^{78°E} Terrain	Height (m)	82°E)	84°
	50 300 550	800 1050 1300 155	0 1800 2050 2300 255	0 2800 3050 3300	3500
Ta	ble-2: Mi	crophysics s	chemes used	d in WRF	Model
	Microp	hysics Sche	me	Physic	cs code
	Kes	sler scheme			1
WRF	Single-m	oment 5-clas	ss (WSM5)		4
WRF	Single-m	oment 6-clas	ss (WSM6)		6
	Т	hompson			8
WRF I	Double-m	oment 5-cla	ss (WDM5)]	14
WRF I	Double-m	oment 6-cla	ss (WDM6)]	16

Results and Conclusion

days 17-19 October 2021

Statistical comparison of six WRF Simulations of cloud microphysics with respect to the observed data in terms of Root Mean Square Error, Correlation Coefficient, and Standard

0	0.1	0.2			
8			0.3		

References

• Nandargi, S., Gaur, A., & Mulye, S. S. (2016). Hydrological analysis of extreme rainfall events and severe rainstorms over Uttarakhand, India. Hydrological Sciences Journal, 61(12), 2145-2163. • Nandargi, S., & Dhar, O. N. (2012). Extreme rainstorm events over the northwest Himalayas during 1875–2010. Journal of Hydrometeorology, 13(4), 1383-1388.

Acknowledgement

For More Discussion: scan QR code

COEDMM-IITR, GBP-NIHE and 9th GEWEX OPEN SCIENCE CONFERENCE-2024

