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GCM PPE tuning
One-at-a-time and ad-hoc tuning is not sufficient to op-
timize model performance and reduce uncertainty in
GCM parameters; simultaneous exploration of parame-
ters is necessary. An perturbed-parameter ensemble of
1-year atmosphere-only ModelE global simulations with
parameters sampled via LHS from a 45-dimensional pa-
rameter space is used to train a emulator or “surro-
gate” model. Outputs are 36 observable variables and
satellite-based error metrics.

The emulator allows for tractable estimation of param-
eters using Bayesian tools such as Markov Chain Monte
Carlo: the emulator acts a surrogate for the GCM out-
put sensitivity to parameter variations.
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Despite an inexact neural-network emulator, this pro-
cedure results in a useful posterior distribution over un-
certain model parameters (below).

Posterior samples (bright green) are generally closer to
targets (crosshairs) than prior (black)

Human Learning from machine parameter tuning
-Reasonable parameter combinations could be found even with 
manual searching (left), but there are examples where ML really helps 
(right).

-Suitable parameter combinations non-existent.  Why? Machine 
might have revealed GCM structural problems: dig deeper  

Suite of GCM experiments:

Black dots: Entire Latin 
Hypercube ensemble (+extra 
samples derived from early 
MCMC) used for developing 
emulator.

Blue dots: ensemble of 
supposedly-“good” GCM 
configurations objectively 
derived using emulator 
knowledge.

Green dots: since emulator has 
error, this is a sub-selection of 
blue dots that ”look” good 
(based on maps, or “the art of 
tuning”)

Red dot: Default E3-NINT from 
11 October 2019.  
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Methodology for SCM tuning experiments
Our aim is to investigate whether single-column model
runs can be used to aid in constraint of GCMs/ESMs.
GCM tuning is very expensive, and the relatively small
ensemble ( 500 members) impairs the ability to find opti-
mal parameter choices. SCMs may help in the following
ways:

1. SCMs are computationally cheaper than GCMs,
allowing for more robust exploration

2. SCMs may allow for targeting important process
regimes

3. SCM tuning may provide a (Bayesian) prior that
can be refined in GCM tuning, making GCM tun-
ing more efficient

Here, we present a preliminary proof-of-concept, demon-
strating how SCMs may serve to narrow the space of
possible parameter values. Our initial methodology is as
follows:

1. Sample from the prior distribution of parameters
using LHS, run numerous SCM cases with these
parameter values

2. Sample from the posterior distribution of param-
eters that was created in GCM tuning, run SCM
cases with these parameter values

3. Compare to Large-Eddy Simulation (LES) and ob-
servational values for each SCM case.

SCM case: DYCOMS-II RF02
Case described in Ackerman et al. (2009), drizzling stra-
tocumulus observed off the coast of southern California
and Baja California during the second research flight of
DYCOMS-II (Stevens et al. 2003).

later. Compared to the ensemble means with cloud
water sedimentation omitted, including it reduces en-
trainment by ;25% (Fig. 1). The diminished entrain-
ment results in a cooler, moister boundary layer, with
ensemble mean LWP increasing by ;20%, surface
precipitation increasing roughly fourfold, and maximum

w02 decreasing by ;10%.

2) PROFILES

Excluding the scatter above the inversion layer, the
ensemble distributions of ul and qt are tight (Fig. 3), with
the observed ul profile well matched by the simulations
while the gradient in the simulated qt profiles indicates a
somewhat less well-mixed boundary layer than ob-
served. Comparatively broader ensemble distributions
are seen in all the other profiles, with the middle half of
the distribution reproducing not only the observed ql

but also the cloud fraction profile remarkably well.
The ensemble distribution of precipitation is even

broader, and the middle half of the distribution falls
between that measured in closed and open cells. The

difference between closed and open cells is prominent
in the precipitation measurements. The precipitation
flux in the middle half of the ensemble is closer to that in
the open cell measurements in the upper region of the
cloud, and transitions to values closer to the closed cell
measurements at lower elevations. The effect on pre-
cipitation of including cloud water sedimentation in the
simulations is seen to be profound throughout the en-
semble profile, and the differences increase with height.
As might be expected in a lightly drizzling regime, the
shape of the precipitation profile is dominated by cloud
water sedimentation in that the total precipitation flux
peaks near cloud top rather than near cloud base as
found in heavily drizzling stratocumulus, both in mea-
surements (e.g., Nicholls 1984) and in simulations (e.g.,
Ackerman et al. 2004). The domination of the precipi-
tation flux by cloud water sedimentation in the upper half
of the cloud layer is seen in Fig. 4 for the only simulation
here where separation between sedimentation of cloud
droplets and drizzle drops is readily available. As noted
by vanZanten and Stevens (2005), it may not be poss-
ible to composite a representative profile from in situ

FIG. 1. Evolution of domain average LWP, entrainment rate (defined in text), maximum
w02 (peak value in the w02 profile), and surface precipitation for simulations that include
cloud water sedimentation and drizzle. Ensemble range, middle two quartiles, and mean
denoted by light and dark shading and solid lines, respectively. Ensemble mean from sim-
ulations that include drizzle but not cloud water sedimentation denoted by dashed lines.
Approximate ranges of measurements (averaged over closed and open cells) denoted by
dotted lines, with upper and lower LWP values estimated from Stevens et al. (2003a) and
aircraft soundings, respectively; entrainment rates from Faloona et al. (2005); maximum w02

from vanZanten and Stevens (2005); and precipitation from vanZanten et al. (2005).
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Ackerman et al. MWR (2009)

LWP is generally comparable to LES for both prior &
GCM posterior, all are within observed ranges (dotted
lines on right figures). Precipitation is underestimated
in prior; GCM posterior better matches models and ob-
served ranges.

Prior and GCM posterior profiles show very different be-
haviors, with much thinner clouds for for the posterior,
with higher precipitation concentration and greatly de-
creased cloud-top radiative cooling. Further diagnostics
(e.g. cloud thickness, precip. at cloud base) are needed.

SCM case: BOMEX
Case described in Siebesma et al. (2003) of trade wind
cumulus observed during the Barbados Oceanographic
and Meteorological Experiment (BOMEX).

Siebesma et al. JAS (2003)
15 MAY 2003 1203S I E B E S M A E T A L .

FIG. 2. Time series of (a) the total cloud cover, (b) the vertically
integrated liquid water path, and (c) the vertically integrated TKE.
The solid lines indicate a mean over all model results. The band
around this mean has a width of twice the standard deviation of the
results of all participating models.

averaged budget equations for heat, moisture, and mo-
mentum in the absence of precipitation. It can be split
formally into two parts: 1) a part calculated by the LES
codes resulting from scales smaller than the computa-
tional domain, and 2) a large-scale forcing part that
needs to be prescribed or parameterized1 resulting from
scales larger than the domain size of the model. Sche-
matically this can be written as

]f ]f ]f
5 1 , (1)1 2 1 2]t ]t ]tmodel forcing

where overbars denote a spatial average over a hori-
zontal slab of the computational domain and f ∈ {u,,
qt, u, y} indicates one of the prognostic variables, that
is, the liquid water potential temperature, the total water
specific humidity, and the horizontal velocity compo-
nents. Note that, although the vertical velocity com-
ponent w is also a prognostic variable, it has no large-
scale forcing and thus is not relevant to this discussion.
The first term on the rhs of (1) is just the turbulent

flux divergence term as calculated by the LES codes:

]f ]w9f9
5 2 , (2)1 2]t ]zmodel

where the primes denote grid box deviations from the
horizontal slab average. Note that because u, and qt are
invariant under phase changes no additional source
terms appear in (2). Also note, our notation assumes the
Boussinesq approximation in that density dependencies
are dropped. Although some models do make use of the
anelastic approximation, and are analyzed in this light,
for clarity our exposition is in terms of a Boussinesq
fluid.
The second term on the rhs of (1) represents just the

forcing terms due to large-scale processes:

]f ]f
5 2v · =f 2 w 1 Q . (3)f1 2]t ]zforcing

The first two terms on the rhs decompose the advective
tendencies by the large-scale flow into their respective
horizontal and vertical components; note that v [ (u,
y) denotes the horizontal wind vector. The last term is
an additional forcing that is variable dependent. For
instance, Q 5 Qr denotes forcing by radiative heating,u,

Q is zero; Qu and Qy represent the effect of large-scaleqt
pressure gradients and are parameterized as f ( 2 y g)y
and 2 f ( 2 ug), respectively, where (ug, y g) denotesu
the prescribed geostrophic wind, and f is the Coriolis
frequency. To assure that all the models use the same
forcing at the surface, we also prescribe the surface
fluxes with observational values. Special care has been
taken to assure that the surface fluxes are balanced by
the vertically integrated prescribed large-scale forcings

1 We distinguished between prescribed and parameterized forcings,
the latter depending on the state of the flow.

and radiative cooling. The precise values of these forc-
ings can be found in appendix B.
Given this framework our critical question can be

rephrased. Given a prescription of the forcing terms in
(3), can the LES flow field, which arises from the forc-
ings, redistribute sensible heat and moisture in such a
way that the mean profiles remain consistent with the
observations?

a. Time-varying statistics
We begin by examining the time evolution of select

macroscopic quantities: total cloud cover, liquid water
path (LWP), and the vertical integrated turbulent kinetic
energy (TKE), which are shown in Fig. 2. The total
cloud cover is defined as the fraction of vertical columns
that contain cloud water and is therefore identical to the
cloud cover that would be observed ideally by satellite.
From the total cloud cover we can conclude that all

models are clearly in a spinup period during the first 2
h; initially there is no resolved-scale turbulence that can
generate sufficient horizontal variability in temperature
and humidity to create clouds, that is, saturated grid
boxes. After half an hour the first clouds are generated.
Since this first ‘‘wave’’ of clouds is generated simul-
taneously, it creates a strong peak in the cloud cover.

2�5�/�2�0������7�
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GCM posterior does not overestimate LWP as much as
LHS ensemble, cloud fractions are generally closer to
the Siebesma LES intercomparison. Also, few/none of
the GCM posterior samples produce stratiform clouds
(which is good).

SCM case: RICO
Case described in van Zanten et al. (2011) of precipi-
tating trade wind cumulus observed during the Rain in
Cumulus over the Ocean (RICO) campaign.

van Zanten et al. JAMES (2011)

particularly the cloud and precipitation related statistics in
the right half of Fig. 3, this temporal variability dominates
the full spread among simulations.

The first couple of hours of simulation time are domi-
nated by the spin-up of the turbulence and the initial
development of the cloud layer. A longer adjustment
timescale is also evident in the thermodynamic state of
the subcloud layer: latent heat fluxes initially decrease,
reaching a minimum after about eight hours, and cloud
base height evolves more markedly over the first twelve
hours than it does thereafter. In the second half of the
simulation period the temporal evolution is modest but
secular. The layer deepens continuously, latent heat fluxes
increase as more dry air is brought to the surface, the mass
flux and cloud cover remain relatively constant, while the
liquid water path and the rain water path increase in
association with the deepening cloud layer (Fig. 3).
Values of cloud cover, surface fluxes, and the general depth
of the convective layer are consistent with observations
during RICO, (e.g., Nuijens et al., 2009) as well as past
observations of trade-wind clouds.

The vertical structure of the clouds is also consistent with
the general picture of such cloud layers as has been
developed over the years. Cloud fraction peaks near cloud
base, where low-level winds maximize and moisture gradi-
ents are relatively large (compare Fig. 4 with Stevens et al.,
2001). More significant differences among the simulations
are evident near cloud top (around 2300 m), where simula-

tions show, to differing degrees, the emergence of local
maxima in liquid water and cloud fraction (lower panels
of Fig. 4). These differences are also associated with the
development of a sharp increase in static stability, as
measured by the increase in dhl=dz as compared to its
initial value at that level. Note that this zone of enhanced
stability (the trade-inversion) develops spontaneously
among the simulations. In contrast to past intercomparison
cases of trade-wind convection, such a feature was not
specified as part of the initial conditions. The somewhat
larger differences that develop among the simulations in this
region are not surprising, as the turbulent eddies are not
well resolved by our grid-mesh in these zones of more
marked stability (cf., Stevens et al., 2001).

Experiments in which the RICO case was rerun using a
single model (in this case the UCLA-LES Matheou et al.,
2010; Nuijens, 2010), but with different numerical schemes
for advection, time-stepping, or even the mean wind used
in the Galilean transform, produced commensurate (or
even larger) differences as those shown across the models
here. In these tests the representation of scalar advection
and the still relatively coarse computational mesh emerge
as key issues.

Important for the parameterization of clouds and precip-
itation is the vertical structure of the mass flux, updrafts,
and the entrainment/detrainment length-scales (Siebesma
and Cuijpers, 1995). In their summary of existing studies,
Siebesma et al. (2003) argued that a mass flux profile that

Figure 3. Time series of various simulation diagnostics (see Appendix for a full listing and nomenclature): inversion height, zi; lowest
cloud base, zcb; surface sensible, r0cpw’h’, and latent, r0Lvw’qt ’, heat flux; cloud core mass-flux at the height of the largest cloud
fraction; fraction of cloudy columns cc; liquid water path, LWP; and rain water path, RWP. Both the mean of the simulations in which
precipitation is allowed to develop (solid line) and prohibited (dashed line) are shown. Ensemble (inter-quartile) spread is given by the
shading. Ensemble spread is shown only for the precipitating simulations, although results for the non-precipitating ensemble are
similar. The ordinate values represent statistics over the last four hours of the simulation, respectively the minimum and maximum
value (for the full ensemble) and the four hour mean, except for zi where the four hour mean of the no precipitation ensemble is also
included.
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The GCM posterior does not overestimate LWP as much
as the LHS prior. As in the BOMEX case, the GCM
produces little to no stratiform cloud, unlike the LHS
prior ensemble.

van Zanten et al. JAMES (2011)

and remote sensing data — particularly of the clouds
themselves. In this section we attempt to exploit this wealth
of data, although several factors conspire to make this more
challenging to do so, at least in a decisive way. Underlying all
of the challenges is the sampling issue. Our case-study is
based on the composite forcing, which means that the
behavior of the simulated clouds cannot a priori match any
particular day, but should fall within the range of observed
cases on similar days. However, similar days are relatively
infrequent, because the composite period falls in between the
intensive field operations, when aircraft data are more sparse.
The in situ measurements that are available are biased by a
flight strategy that sought to maximize penetrations of active
cumuli growing through the flight level. For instance, a
comparison between LES and airplane observations of the
RICO campaign by Heus et al. (2009) showed a discrep-
ancy in cloud cover, cloud (size-) distribution and in in-
cloud velocity; however the differences between models
and observations were demonstrated to mostly vanish if
the airplane’s bias towards larger clouds was taken into
account. Although these issues complicate efforts to make
decisive statements, the type of comparisons we are able to
make still represent a great step forward in studies of
cumulus convection.

A basic question is whether the simulated cloud cover is
consistent with what was observed. The median cloud
cover among the simulations, averaged over the last four
hours, is 0.19, which compares favorably with the value of
0.17 obtained through an analysis of lidar data (Nuijens et
al., 2009). This degree of correspondence is probably
fortuitous. Not only is there considerable scatter in cloud
cover among the simulations, cloud cover can vary by a

factor of two for any given model as a function of its
resolution and numerical methods (Matheou et al., 2010).
Likewise, observational estimates vary significantly, both as
a function of ones retrieval method and ones choice of
sensor (Zhao and Di Girolamo, 2007). These caveats aside,
the cloud cover is almost certainly between 0.1 and 0.3, and
given this range of uncertainty it appears to be well
represented by the simulations.

To compare the vertical profile of cloudiness with the
lidar data we define an effective cumulative cloud cover, at
some level using the algorithm of Neggers et al. (Overlap
statistics of cumuliform boundry-layer in large-eddy simu-
lations, submitted to Journal of Geophysical Research,
2011), which is derived from LES. However the grid-
spacing dependent length scale used to composite layers
was rescaled (by a factor of 0.6) in our application so that
it matched the lidar for surface based cloud-cover. The
rescaling was justified by the fact that their is some
arbitrariness in how one sets the reflectivity threshold in
the lidar, and hence the overall cloud cover (Nuijens et al.,
2009). Moreover, our motivation for reconstructing the
effective increment in cumulative cloud fraction, due to
clouds at different layers, was not meant as a test of the
reconstruction method, but rather the vertical distribution
of clouds by the simulations.

The effective cloud cover versus height, as defined by the
reconstruction, is presented in Fig. 7 alongside the cumu-
lative cloud cover as measured by the lidar. The agreement is
remarkable, suggesting that LES may adequately represent
the distribution of cloud top heights. The level of agreement
is even more surprising given that the observations com-
posite over more variability, hence the tendency for a few

Figure 6. Precipitation flux profile (upper-left); ‘bulk’ fall velocity (upper-right); histograms of surface rain rates as a function of intensity
(for last hour only, bottom right). In the rain-rate histograms the black lines denote the SPol data converted using either the TRMM
(solid) or RICO (dashed) reflectivity vs rain-rate relationship. Lines are otherwise colored following the degrees of freedom available for
the microphysical scheme, green for bin, blue for two moment and red for one moment schemes (note because of an output
diagnostic problem the UCLA-LES is not included in the ‘bulk’ fall velocity plot).
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The GCM posterior generally produces greater precipi-
tation rates than the LHS prior samples.

SCM case: SCT
This case simulates stratocumulus-to-cumulus transi-
tion and is under evaluation at NASA-GISS.
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SCM case: TWP-ICE
Case described in Fridlind et al. (2012) of tropical deep
convection observed near Darwin, Australia during the
Tropical Warm Pool-International Cloud Experiment
(TWP-ICE). Two meteorological phases occurred: “ac-
tive” (first 6-7 hours shown here) and “suppressed” (last
6-7 hours).

Differences between ensembles are primarily visible in
reduced IWP and lower optical thickness. Detailed anal-
ysis needed.

Conclusions & Big Picture
This work is part of a broader effort to systematically
improve parameterized components of weather and cli-
mate models. Global tuning is one of the best targets for
systematic inference, but is extremely expensive. SCM
simulations may help target processes and speed identi-
fication of probable parameter combinations. Bottom-
up constraints (see Sean P. Santos poster) can also be
incorporated when learning is Bayesian.
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Next steps include:
• Identify SCM outputs to use as targets for infer-

ence
• Test whether constraint using the GCM poste-

rior outputs yeilds parameter combinations con-
sistent that ensemble

• Formulate a pre-GCM tuning methodology using
SCMs to accelerate parameter estimation

• Test SCMs from CESM, GEOS, E3SM models
• Use SCM PPE tuning methodology as a testbed

to benchmark parameter tuning methodologies
(e.g. ensemble size, LHS ensemble vs. Gaussian,
etc.)


