Bridging The Divide Between Bin And Bulk Microphysics

What prognostic variables are best for simulating warm rain with bulk microphysics schemes?

Sean Patrick Santos1,2, Marcus van Lier-Walqui1,2, Hugh Morrison3, and Adele Igel4

1CCSR, Columbia University 2NASA Goddard Institute for Space Studies 3National Center for Atmospheric Research 4University of California, Davis

11

The BOSS Framework: Microphysics With No Assumed Drop Size Distribution

BOSS: The Bayesian Observationally constrained Statistical-physical Scheme

- BOSS schemes with three cloud moments perform much better than those with two cloud moments (Fig. 1).
- Although rain moments are useful for diagnosing the autoconversion rate “offline”, they do not benefit the model in a time-evolving context (Fig. 2).
- We are developing a “single category” version of BOSS with no artificial rain/cloud distinction.

AMP: A Bulk Scheme With Bin Physics

AMP: An Arbitrary Moment Predictor

- The Hebrew University bin model was used to produce a bulk reconstruct-evolve-average collision-coalescence scheme.
- Using separate rain and cloud categories, defined by a 40 micron size cutoff, (schemes c03-r03 and c038-r038 in Fig. 4) is less accurate than using moments of the full hydrometeor size spectrum (scheme f0349).
- Two-category schemes perform much better with a 25 micron cutoff, though the two-moment scheme struggles with rain reflectivity (not shown).
- More details in Igel et al., 2022.

JEFE: Measuring Predictability

JEFE: Jacobian Evaluation of Functional Error

- Two-moment schemes with separate rain and cloud categories are generally unable to emulate bin model precipitation.
- Box model studies (AMP and JEFE) show that four-moment single-category schemes are more accurate. We are working on corroborating this with BOSS.
- All studies agree that using three or more cloud moments substantially improves two-category autoconversion rates.
- Lowering the threshold size separating cloud from rain may also help based on AMP results.

Conclusions

References

Acknowledgements

This work was supported by the U.S. Department of Energy under grant number DE-SC0021270.

Contact Information

- Email: SeanPatrickSantos@gmail.com