Storm-resolving simulations with IFS-NEMO/FESOM in the nextGEMS project

Tobias Becker, Thomas Rackow, Xabier Pedruzo, Sebastian Milinski, Nikolay Koldunov, Irina Sandu, and the ECMWF-AWI modelling teams
Different Development Cycles

- **Cycle 1** ~75 days 9km/4.5km w/ Deep On/Off
- **Cycle 2**
 - 2 years baseline: 9 km Deep On (NEMO)
 - 1 year 4.5 km Deep Off (FESOM)
 - ~8 months 2.9 km Deep Off (FESOM)
- **Cycle 3** (planned): 2-4 years at 2.9 km
- **Production runs**: 30 years

Wind gusts over Europe (N. Koldunov, AWI)
The nextGEMS ocean grid for Cycle 2: NG5

- **Cycle 1**: IFS-FESOM ran with 0.25 degree ocean only, coupled to IFS cycle 46r1
- **Cycle 2**:
 - refactored FESOM code that supports hybrid MPI/OpenMP
 - new NG5 grid with higher ocean resolution (7.5 million surface nodes)
 - coupled to operational IFS cycle 47r3.3
 - Eddy-resolving in large areas; Tropical Instability Waves resolved
NG5 grid allows for linear kinematic features (sea ice cracks) in both hemispheres.
Water and energy imbalance

IFS: semi-Lagrangian dynamics is non-conserving:
gets worse at higher resolution and when deep convection parameterisation is switched off

Deep On, 9 km: excess precipitation of 4.6%
Deep Off, 4.5 km: excess precipitation of 10.7%

Deep On, 9 km: 2 W m$^{-2}$
Deep Off, 4.5 km: 6.4 W m$^{-2}$
Water and energy imbalance

IFS: semi-Lagrangian dynamics is non-conserving:
gets worse at higher resolution and when deep convection parameterisation is switched off

To fix the water imbalance for Cycle 2, we activated tracer mass fixers for all moist species

Deep On, 9 km: excess precipitation of 4.6%
Deep Off, 4.5 km: excess precipitation of 10.7%
remaining imbalance: about 0.1%

Deep On, 9 km: 2 W m\(^{-2}\)
Deep Off, 4.5 km: 6.4 W m\(^{-2}\)
remaining imbalance: less than 1 W m\(^{-2}\)

Scaled water imbalance

atm. energy imbalance (W m\(^{-2}\))
2m temperature

- all simulations show temperature increase of 0.5 to 1 K by the end of 2020
- temperature increase slows down in 2021, equilibrium at 0.8-0.9 K warming?
- two FESOM simulations with very similar temperature evolution
- FESOM warm bias Aug 2020: combined signal from NH mid lats and SH high lats
- longer-term warming trend stems mostly from tropics, particularly with Deep Off

![Graph showing global 2m temperature difference with respect to ERA5](image)

- ALL: Cycle 2, Deep On, 9 km, Nemo
- Cycle 2, Deep Off, 9 km, Nemo
- Cycle 2, Deep Off, 4.5 km, Fesom
- Cycle 2, Deep Off, 2.9 km, Fesom

- TROPICS
- OCEAN
- LAND
global mean TOA radiation bias rel. to CERES climatology

- too much OLR
- not enough reflection of shortwave radiation
- biases compensate in Cycle 1 but not anymore in Cycle 2
Precipitation

- Deep Off: mean precipitation strongly overestimated over NH Pacific ITCZ
- precipitation too intense with Deep Off and not intense enough with Deep On
Precipitation

- Deep Off: mean precipitation strongly overestimated over NH Pacific ITCZ
- Precipitation too intense with Deep Off and not intense enough with Deep On
- Please visit me at my poster for sensitivity study that investigates these problems and offers possible solutions
Low cloud cover in IFS 2.5 km (Nikolay Koldunov, AWI)