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. Overshooting Convection and Tropical Cirrus in the DYAMOND Global Storm-Resolving Models
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1. Background and Motivation 4. Deep Convection in the Global Tropics in DYAMOND-2

IMERG Climatolog

e Cirrus in the Tropical Tropopause Layer (TTL; 14-18 km)! " U N7 o IR = Following Dauhut and Hohenegger (2022)3, we use the first percentile of
influence the climate through altering the top-of-atmosphere v | A | outgoing longwave radiation (OLR) to evaluate deep convection in the GSRMs.
radiation balance? and stratospheric water vapor? R e Overall spatial distribution of

deep convection is consistent
| between models

» ICON has consistently higher
OLR values; convection is not

* Overshooting convection that reaches the TTL or higher can
inject water vapor and ice into the TTL to support cirrus
formation*> and alter the stratospheric water vapor budget®
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over oceans do not
Left: Time-mean precipitation rate for IMERG observations and five GSRMs in DYAMOND-2 coarsened to match IMERG (0.1° necessarily do the same

grid, 30 min). Right: First percentile of OLR for the same five GSRMs (native grid, 15 min). Figure modeled after Fig. 3 in DH225E,

* GSRMs = global storm-resolving models
* Can explicitly resolve deep convection because of sub-5 km
horizontal resolutions
« DYAMOND project’: intercomparisons of 9-11 GSRMs with 2.5-5

: : : but is more intense

km horizontal grid spacing ke-H
: m ipitat slands . Take-Home M

. DYAMOND-1 (boreal summer): August 1 to September 10, SAM, GEOS, and SCREAM simulate enhanced precipitation over islands in 5. Take-Home Messages

2016 the Maritime Continent not seen in the other GSRMs
* DYAMOND-2 (boreal winter): January 20 to March 1, 2020 ‘ : '

for land regions

e Spatial distribution of simulated precipitation matches the observations,

* DYAMOND-1: Deep convection dominates water transport
Je LTV Close-up of into the TTL and consists mostly of frozen water; there

e Initialized from same conditions and run freely for 40 days (i.e., p;gii;:tziir;n o are substantial intermodel differences in the most intense
not nudged to observations or reanalysis) the Maritime updraft and downdraft speeds
 We compare to observations: IMERG precipitation (2011-2020) Continent. DYAMOND-2: Models disagree on the locations and
intensity of the deepest convection, esp. land vs. oceans
3. Regional Convective Injection into the TTL in DYAMOND-1 Next steps: conduct further comparisons between GSRMs
and observations and examine the influence of convection
14 km Vertica:l Velocity Bin Frequency |, podels agree on overall «10-6 14 km Bin Mass Flux (NICAM) NICAM is the only DYAMOND-1 that overshoots the cold point tropopause in DYAMOND-2
100 . e NICAM . - model that saved full 3D output
0 Sahel - 1.0-
L4 | FV3 histogram shape and that °1 Sahel, N|¢AM of all frozen hydrometeors.
g i Bl the TTL is typically quiescent | | =~ o5 6. Acknowledgements and Contact
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Note that bins are unevenly spaced. weighted by bin frequency.
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