

Overshooting Convection and Tropical Cirrus in the DYAMOND Global Storm-Resolving Models

1. Background and Motivation

- Cirrus in the Tropical Tropopause Layer (TTL; 14-18 km)¹ influence the climate through altering the top-of-atmosphere radiation balance² and stratospheric water vapor³
- Overshooting convection that reaches the TTL or higher can inject water vapor and ice into the TTL to support cirrus formation^{4,5} and alter the stratospheric water vapor budget⁶

How are deep convection and the convective injection of water into the TTL simulated in GSRMs?

Schematic of the TTL and overshooting convection.

2. DYAMOND GSRMs and Observations

- GSRMs = global storm-resolving models
 - Can explicitly resolve deep convection because of sub-5 km horizontal resolutions
- **DYAMOND project**⁷: intercomparisons of 9-11 GSRMs with 2.5-5 km horizontal grid spacing
 - DYAMOND-1 (boreal summer): August 1 to September 10, 2016
 - DYAMOND-2 (boreal winter): January 20 to March 1, 2020
 - Initialized from same conditions and run freely for 40 days (i.e., not nudged to observations or reanalysis)
- We compare to observations: IMERG precipitation (2011-2020)

3. Regional Convective Injection into the TTL in DYAMOND-1

- Models agree on overall histogram shape and that the TTL is typically quiescent
- The most extreme updrafts and downdrafts differ greatly between models but are infrequent
- Histograms for a Tropical West Pacific (TWP) region are qualitatively similar (not shown)

References: ¹Fueglistaler et al. (2009), RG; ²Haladay and Stevens (2009), JGR; ³Jensen et al. (2018), JGRA; ⁷Stevens et al. (2019), PEPS; ^BDauhut and Hohenegger (2022), JGRA.

Jacqueline Nugent¹, Sami Turbeville¹, Chris Bretherton^{1,2}, Tom Ackerman¹, Peter Blossey¹ ¹University of Washington Department of Atmospheric Sciences, Seattle, WA; ²Allen Institute for Artificial Intelligence, Seattle, WA

Left: Time-mean precipitation rate for IMERG observations and five GSRMs in DYAMOND-2 coarsened to match IMERG (0.1° grid, 30 min). **Right:** First percentile of OLR for the same five GSRMs (native grid, 15 min). Figure modeled after Fig. 3 in DH22^B.

- Spatial distribution of simulated precipitation matches the observations, but is more intense
- SAM, GEOS, and SCREAM simulate enhanced precipitation over islands in the Maritime Continent not seen in the other GSRMs

Close-up of time-mean precipitation in the Maritime Continent.

NICAM is the only DYAMOND-1 model that saved full 3D output of all frozen hydrometeors.

- Frozen water flux exceeds vapor flux
- Most mass flux into the TTL comes from the infrequent columns of deep convection
- TWP fluxes are slightly smaller (not shown)

Following Dauhut and Hohenegger (2022)⁸, we use the first percentile of outgoing longwave radiation (OLR) to evaluate deep convection in the GSRMs.

- Overall spatial distribution of deep convection is consistent between models
- ICON has consistently higher OLR values; convection is not as deep (opposite for NICAM)
- Land-ocean differences in precipitation are reflected in OLR
- Models disagree on where the deepest convection is, particularly over southern Africa
- The models that simulate more intense convection over oceans do not necessarily do the same for land regions

5. Take-Home Messages

- **DYAMOND-1:** Deep convection dominates water transport into the TTL and consists mostly of frozen water; there are substantial intermodel differences in the most intense updraft and downdraft speeds
- **DYAMOND-2:** Models disagree on the locations and intensity of the deepest convection, esp. land vs. oceans
- **Next steps:** conduct further comparisons between GSRMs and observations and examine the influence of convection that overshoots the cold point tropopause in DYAMOND-2

6. Acknowledgements and Contact

We thank ESiWACE and DKRZ for providing access to the DYAMOND output and facilitating analysis. This work is supported by the NSF PIRE-Cirrus program.

Nugent et al.