Environmental factors regulating deep convective updraft width across a spectrum of convective modes

Jake P. Mulholland^{[1][2*]}, John M. Peters^{[1][3*]}, and Hugh Morrison^[4]

[1] Naval Postgraduate School, [2] University of North Dakota (*current affiliation), [3] Pennsylvania State University (*current affiliation), [4] National Center for Atmospheric Research

- quasi-2D squall lines
 - (a) cross section of 2.5 km deep cold Ο pool used to initiate quasi-2D squall lines
 - (b) three different low-level (0-2.5 km) Ο and upper-level (2.5-10.0 km) shear magnitudes
 - (c) vertical profile of CAPE (blue line) Ο and passive tracer layer (shading) for measuring entrainment-driven dilution
 - (d) vertical profile of -CIN (blue line) Ο and passive tracer layer (shading)

		(a)0-5 k	(a) 0-5 km AGL Broad Updrafts			(b) 5-10 km AGL Core Updrafts		
0	(a) – larger low-level "broad" (w ≥ 5 m s ⁻¹) and upper-level "core"	mg 50.22	25.96 ±1.28	53.83 ±4.83	1.55 ±0.09	2.29 ±0.13	5.79 ±0.33	
$(w \ge 2)$ areas levels (b) - 1 updra levels	$(w \ge 20 \text{ m s}^{-1})$ updraft areas in stronger low- level shear simulations	8 <mark>-58</mark> ±0.76	24.61 ±2.48	45.7 ±2.47	2.01 ±0.11	2.49 ±0.13	4.36 ±0.21	
	(b) – little sensitivity of updraft area to upper-	Un 9.69 ±0.61	20.32 ±1.4	52.74 ±3.45	2.21 ±0.14	1.97 ±0.09	5.36 ±0.97	
				LL3 (km²)		LL2	LL3	

- Squall line updraft properties are more sensitive to variations in low-level shear as opposed to variations in upper-level shear
- Simulations with stronger low-level shear exhibited updrafts that were *wider, less dilute,* stronger, and taller

ASR

Atmospheric System Research

Results build upon Alfaro and Khairoutdinov (2015; JAS) and Alfaro (2017; JAS)

Mulholland, J. P., J. M. Peters, and H. Morrison, 2021: How does vertical wind shear influence entrainment in squall lines? J. Atmos. Sci., 78, 1931–1946, <u>https://doi.org/10.1175/JAS-D-20-0299.1</u>

- 2.5

또 고 2.0 -

ЪЧ 1.5 -

0.2

 PT_{MAX} [kg kg⁻¹

Cloud Model 1 (CM1; Bryan and Ο Fritsch 2002; MWR) simulations of unsheared deep convection Ο

Three different LCL heights: LCL1 = 0.5 km

Slight decrease in convective Ο available potential energy (CAPE) as the LCL height was raised

Rising and expanding dry thermals/updrafts below LCL have a greater vertical distance to traverse before reaching saturation and forming clouds in higher LCL environments (Williams and Stanfill 2002; PHY) This process "sets the stage" for wider moist Ο updrafts above the LCL

Resulting clouds in higher LCL environments Ο are wider, less dilute, stronger, and deeper

Mulholland, J. P., J. M. Peters, and H. Morrison, 2021: How does LCL height influence deep convective updraft width? Geophys. Res. Lett., 48, 1-8, https://doi.org/10.1029/2021GL093316

(a) – larger dry updraft area (A_D) at Ο LCL for higher LCL simulations (b) – larger moist updraft area (A_M)

above LCL for higher LCL simulations

- (c) less entrainment-driven Ο
- dilution (i.e., larger PT_{MAX}) in higher LCL simulations
- (d) larger buoyancy (B_{MAX}) in 0 higher LCL simulations
- **Thermal Tracking Attributes** (b) (a) $A_D [km^2]$ A_M [km²] (d) (**c**) LCL1_2kmBl B_{MAX} from CM1 LCL2_2kmBl LCL3_2kmBU input sounding LCL1_1kmBU LCL2_1kmBl LCL3_1kmBl

<u>Email</u>: jake.mulholland@und.edu; <u>Twitter</u>: @JakeMulholland1

NSF AGS-1928666, NSF AGS-1841674, DOE-ASR DE-SC0020104, and DOE DE-SC0000246356

0.08

 $B_{MAX} [m s^{-2}]$

0.10