
o Squall line updraft properties are more 
sensitive to variations in low-level shear as 
opposed to variations in upper-level shear

o Simulations with stronger low-level shear 
exhibited updrafts that were wider, less dilute, 
stronger, and taller

o Results build upon Alfaro and Khairoutdinov 
(2015; JAS) and Alfaro (2017; JAS)
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Part 2: LCL height variation effects on unsheared deep convection

o Cloud Model 1 (CM1; Bryan and 
Fritsch 2002; MWR) simulations 
of unsheared deep convection

o Three different LCL heights:

o Slight decrease in convective 
available potential energy (CAPE) 
as the LCL height was raised

Part 1: Low- and upper-level shear variation effects on squall lines

o Convection takes longer 
to develop in higher LCL 
simulations

o Longer-lasting, deeper, 
stronger, and more 
buoyant deep convection 
in the higher LCL 
simulations

o (a) – larger dry updraft area (AD) at 
LCL for higher LCL simulations

o (b) – larger moist updraft area (AM) 
above LCL for higher LCL 
simulations

o (c) – less entrainment-driven 
dilution (i.e., larger PTMAX) in higher 
LCL simulations

o (d) – larger buoyancy (BMAX) in 
higher LCL simulations

o Rising and expanding dry thermals/updrafts 
below LCL have a greater vertical distance to 
traverse before reaching saturation and 
forming clouds in higher LCL environments 
(Williams and Stanfill 2002; PHY)

o This process “sets the stage” for wider moist 
updrafts above the LCL

o Resulting clouds in higher LCL environments 
are wider, less dilute, stronger, and deeper
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o Cloud Model 1 (CM1; Bryan and Fritsch 
2002; MWR) simulations of sheared 
quasi-2D squall lines

o (a) – cross section of 2.5 km deep cold 
pool used to initiate quasi-2D squall lines

o (b) – three different low-level (0-2.5 km) 
and upper-level (2.5-10.0 km) shear 
magnitudes

o (c) – vertical profile of CAPE (blue line) 
and passive tracer layer (shading) for 
measuring entrainment-driven dilution 

o (d) – vertical profile of -CIN (blue line) 
and passive tracer layer (shading)

o Taller, more vertically 
aligned updrafts in 
stronger low-level shear 
simulations

o Reduced entrainment-
driven dilution for updrafts 
in stronger low-level shear 
simulations

o Stronger peak updrafts in 
stronger low-level shear 
simulations

o (a) – larger low-level 
“broad” (w ≥ 5 m s-1) 
and upper-level “core” 
(w ≥ 20 m s-1) updraft 
areas in stronger low-
level shear simulations

o (b) – little sensitivity of 
updraft area to upper-
level shear variations
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