EXZELLENZCLUSTER CLIMATE, CLIMATIC CHANGE, AND SOCIETY (CLICCS)

Tropical free-tropospheric humidity in global storm-resolving models

Theresa Lang¹, Ann Kristin Naumann^{1,2}, Bjorn Stevens², Hauke Schmidt², Stefan A. Buehler¹

1) Universität Hamburg, 2) Max Planck Institute for Meteorology

theresa.lang@uni-hamburg.de

MOTIVATION

The existing model spread in tropical relative humidity (RH) and its change with warming limits our ability to predict Earth's climate sensitivity (e.g. Vial et al., 2013). A recent study showed that, although RH differences are reduced in global storm-resolving models, they remain an important source of uncertainty for the clear-sky radiation budget (Lang et al., 2021) and therefore need to be better understood. In this study we address the following research questions:

Which model uncertainties cause the remaining spread in tropical RH across global storm-resolving models?

METHODS

Test sensitivity of tropical RH in ICON experiments

Control Control 2	45 days, 5km grid spacing, 110 vertical levels As Control, but with perturbed initial conditions to		To first order, the humidity of an air parcel is controlled by the temperature at which it was last saturated (Sherwood, 1996).	
Δx/2 2Δz Δz/2 2v _{ice} 2-mom TTE	 estimate internal variability Halved horizontal grid spacing (2.5 km) Doubled vertical grid spacing Halved vertical grid spacing Increased fall speed of ice particles Exchange 1-moment with 2-moment microphysics Exchange 3D Smagorinsky with 1D Total turbulent energy (TTE) turbulence 	model resolution	Are RH changes in the sensitivity experiments explained by the last- condensation model? $\mathcal{R}_{lc} = \frac{q_{lc}^*}{q_t^*} = \frac{e^*(T_{lc})}{e^*(T_t)} \frac{p_t}{p_{lc}} (1)$	Or do changes in parameterized moisture sources and sinks <i>s</i> after last condensation matter? $\mathcal{R}_{lc+s} = \frac{q_{lc}^* + s}{q_t^*} (2)$
 RH change the spread DYAMONE 	es lie well within 16 I in the 14 \rightarrow confirms 12 in storm- $\sum_{k=10}^{k} 10$ models k RH (a) (b) (a) $\sum_{k=10}^{k} Control 2$ $\Delta x/2$ $\Delta z/2$	<section-header></section-header>		temperature
matters if i		$\frac{1}{\sqrt{2\pi}}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Fig. 1 : Tropical mean RH in sensitivity ex inter-model standard deviation is indicate		 Except for the 2-mom experiment, RH char 	nges Fig. 2 : Mid-tropospheric (4-

Determine last-condensation points from back trajectories

What are the physical mechanisms behind the

RH changes?

How does the turbulence scheme affect last-condensation temperature? Spec. hum.

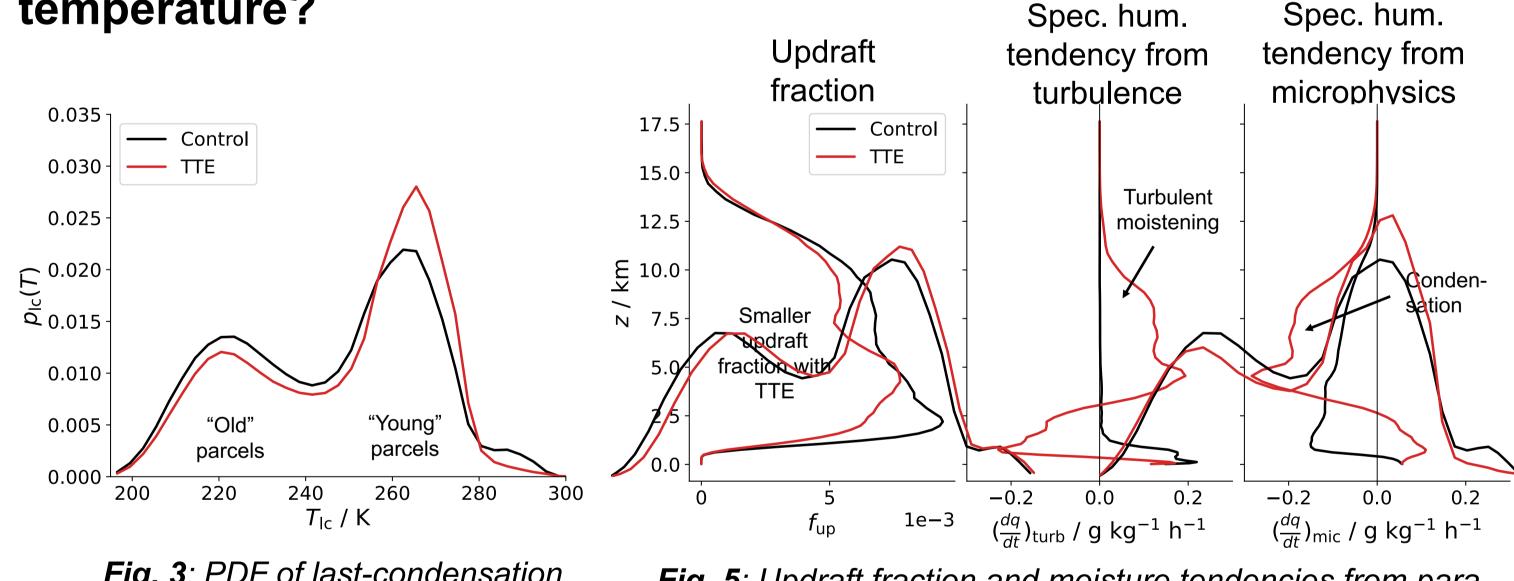


Fig. 3: PDF of last-condensation temperature

Fig. 5: Updraft fraction and moisture tendencies from parameterizations in top quartile of column relative humidity

Hypothesis: Larger share of "young" parcels in TTE experiment (Fig. 3) results from strong turbulent moistening of the free troposphere, creating a broad moist region with saturation occurring also outside strong updrafts (Fig. 5).

A given change in LC temperature translates into a smaller RH change in dry regions due to their cold source temperatures and therefore low water vapor concentrations

are explained by changes in LC temperature

to Control experiment in decile-bins of RH – (a) ICON-simulated and (b) reconstructed from Eq. 1 and 2. (c) Difference in lastcondensation temperature.

8km average) RH difference

SUMMARY & CONCLUSIONS

- **Parameterized processes** (turbulence and microphysics) are an important \bullet remaining source of uncertainty for tropical RH in global storm-resolving models.
- Exchanging the **turbulence** scheme particularly affects RH in the mid troposphere, \bullet mainly by changing the structure of the deep convective regions and hence the statistics of last condensation points.
- Changes in the **microphysics** result in more localized RH differences, for which \bullet changes in moisture sources after last condensation also play a role.